On the Teaching of Linear Algebra

To a large extent, it lies, no doubt, in what is presented in this work under the title of ‘meta lever‘, a method which it is certainly interesting to develop and further refine. There exists in mathematics courses a strange prudery which forbids one to a

  • PDF / 2,093,136 Bytes
  • 302 Pages / 432 x 648 pts Page_size
  • 29 Downloads / 191 Views

DOWNLOAD

REPORT


Mathematics Education Library VOLUME 23

Managing Editor A.J. Bishop, Monash University, Melbourne, Australia

Editorial Board H. Bauersfeld, Bielefeld, Germany J.P. Becker, Illinois, U.S.A. G. Leder, Melbourne, Australia O.Skovsmose, Aalborg, Denmark A. Sfard, Haifa, Israel S. Turnau, Krakow, Poland

The titles published in this series are listed at the end of this volume.

ON THE TEACHING OF LINEAR ALGEBRA

Edited by

JEAN-LUC DORIER Laboratoire Leibniz, Grenoble, France

KLUWER ACADEMIC PUBLISHERS NEW YORK / BOSTON / DORDRECHT / LONDON / MOSCOW

eBook ISBN: Print ISBN:

0-306-47224-4 0-792-36539-9

©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow Print ©2000 Kluwer Academic Publishers Dordrecht All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: and Kluwer's eBookstore at:

http://kluweronline.com http://ebooks.kluweronline.com

TABLE OF CONTENTS

FOREWORD TO THE ENGLISH EDITION...........................................xiii PREFACE ............................................................................................................ xv INTRODUCTION............................................................................................... xix

PART I. EPISTEMOLOGICAL ANALYSIS OF THE GENESIS OF THE THEORY OF VECTOR SPACES ..................................... 1 J.-L. Dorier 1. INTRODUCTION........... ................................................................................ 3 2. ANALYTICAL AND GEOMETRICAL ORIGINS.............................................. 6 2.1. Systems of Numerical Linear Equations: First Local Theory of Linearity ...... 6 2.1.1. Euler and the Dependence of Equations....................................................... 6 2.1.2. Cramer and the Birth of the Theory of Determinants.................................... 8 2.1.3. The Concept of Rank ....................................................................................... 9 2.1.4. Georg Ferdinand Frobenius......................................................................... 10 2.1.5. Further Development.................................................................................... 11 2.2. Geometry and Linear Algebra: a Two-Century-Long Process of Complex Reciprocal Exchanges.............................................................................. 11 2.2.1. Analytic Geometry.................................................................................... .13 2.2.2. Leibniz’s Criticism..................................................................................... .13 2.2.3. Geometrical Representation of Imaginary Quantities ............................... 14 2.2.4. Möbius’s Barycentric Calculus ......................................................................... 15 2.2.5. Bellavitis’s Calulus of Equipollences...............................................