Open Quantum Systems II The Markovian Approach

Understanding dissipative dynamics of open quantum systems remains a challenge in mathematical physics. This problem is relevant in various areas of fundamental and applied physics. From a mathematical point of view, it involves a large body of knowledge.

  • PDF / 15,493,336 Bytes
  • 254 Pages / 595.08 x 842.04 pts (A4) Page_size
  • 94 Downloads / 245 Views

DOWNLOAD

REPORT


    

         

                                                                                                                                                                                                                              

   

 

 





                                                                                                                                                                                                   