Parametric CFD Optimization of an APCVD Glass Coating Deposition Module

  • PDF / 169,669 Bytes
  • 7 Pages / 612 x 792 pts (letter) Page_size
  • 113 Downloads / 204 Views

DOWNLOAD

REPORT


1196-C06-24

Parametric CFD Optimization of an APCVD Glass Coating Deposition Module Jiuan Wei1, Wei Zhang1, Tom Salagaj1, Karlheinz Strobl1 1 CVD Equipment Corporation, 1860 Smithtown Ave., Ronkonkoma, NY 11779 ABSTRACT Atmospheric Pressure Chemical Vapor Deposition (APCVD) thin film coating process is one of the most cost efficient large area thin film coating solutions presently available on the market and can be up to 2.5 times lower in cost compared with a low pressure sputtering system. Advanced materials such as transparent conductive oxides (TCO) used for solar panel manufacturing and for energy saving (Low-E) windows already have been deposited with APCVD Tools incorporating one or more deposition modules. Thin films such as SiO2, TiO2 and F: SnO2, etc have been successfully deposited onto glass sheets. However further improvement in material efficiencies and operational cost reductions are needed to satisfy the growing demand for such highly customized materials. It is also desirable in the future to be able to deposit other material films which traditionally have not yet been available on this lower cost APCVD manufacturing platform, such as zinc oxide (ZnO). To investigate in a quantitative manner the improvement potential for the traditional APCVD deposition module design solution we performed a multidimensional computational fluid dynamics (CFD) parametric study using ANSYS FLUENT V12. As a baseline deposition module design we used a commercially available APCVD deposition module originally developed by Watkins-Johnson for SiO2 deposition trench fill of Si wafers from TEOS, O2 and Ozone from which we could locate in previously published papers for both experiment and CFD modeling results. The CFD software enabled us to perform a full parametric APCVD deposition module design study and allowed us to quantify the efficiency and throughput gains/losses of a wide variety of design change options. The main driver for this study was to learn in a quantitative, cost efficient and time efficient manner about what system design modifications have the potential for significant precursor efficiency increase and/or deposition throughput gain for a particular APCVD deposition process. The results of this study will be utilized to accelerate our proprietary, next generation Off-line and On-line CVDgCoat™ APCVD platform development. INTRODUCTION Transparent conductive oxides coatings are thin films deposited on regular glass, which are transparent to visible light and conductive to electricity. Generally, they are in the forms of indium tin oxide (ITO), fluorine doped tin oxide (SnO2: F), and doped zinc oxide (ZnO). TCO coatings have wide applications in both semiconductor and photovoltaic industries. For instance, ITO can be used as infrared-reflective coating to make energy-conserving windows as well as be applied in flat panel displays and solar cells. There are various methods to deposit TCO films on a substrate, including metal organic molecular beam deposition, spray pyrolysis, pulsed laser deposition, magnetro