Phenomenology and Mathematics
The present collection gathers together the contributions of the world leading scholars working in the intersection of phenomenology and mathematics. During Edmund Husserl’s lifetime (1859-1938) modern logic and mathematics rapidly developed toward their
- PDF / 1,775,218 Bytes
- 243 Pages / 439.37 x 666.142 pts Page_size
- 62 Downloads / 189 Views
PHAENOMENOLOGICA SERIES FOUNDED BY H.L. VAN BREDA AND PUBLISHED UNDER THE AUSPICES OF THE HUSSERL-ARCHIVES
195
PHENOMENOLOGY AND MATHEMATICS
Editorial Board: Director: U. Melle (Husserl-Archief, Leuven) Members: R. Bernet (Husserl-Archief, Leuven) R. Breeur (Husserl-Archief, Leuven) S. Ijsseling (Husserl-Archief, Leuven) H. Leonardy (Centre d’études phénoménologiques, Louvain-la-Neuve) D. Lories (CEP/ISP/Collège Désiré Mercier, Louvain-la-Neuve) J. Taminiaux (Centre d’études phénoménologiques, Louvain-la-Neuve) R. Visker (Catholic University Leuven, Leuven) Advisory Board: R. Bernasconi (The Pennsylvania State University), D. Carr (Emory University, Atlanta), E.S. Casey (State University of New York at Stony Brook), R. Cobb-Stevens (Boston College), J.F. Courtine (Archives-Husserl, Paris), F. Dastur (Université de Paris XX), K. Düsing (Husserl-Archiv, Köln), J. Hart (Indiana University, Bloomington), K. Held (Bergische Universität Wuppertal), K.E. Kaehler (Husserl-Archiv, Köln), D. Lohmar (Husserl-Archiv, Köln), W.R. McKenna (Miami University, Oxford, USA), J.N. Mohanty (Temple University, Philadelphia), E.W. Orth (Universität Trier), C. Sini (Università degli Studi di Milano), R. Sokolowski (Catholic University of America, Washington D.C.), B. Waldenfels (Ruhr-Universität, Bochum)
For further volumes: http://www.springer.com/series/6409
PHENOMENOLOGY AND MATHEMATICS Edited by Mirja Hartimo
123
Editor Mirja Hartimo Philosophy University of Helsinki P.O. Box 24 (Unioninkatu 40 A) FIN-00014 University of Helsinki Finland [email protected]
ISSN 0079-1350 ISBN 978-90-481-3728-2 e-ISBN 978-90-481-3729-9 DOI 10.1007/978-90-481-3729-9 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009943718 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)
CONTENTS
I.
II.
MATHEMATICAL REALISM AND TRANSCENDENTAL PHENOMENOLOGICAL IDEALISM
1
Richard Tieszen § I. Standard Simple Formulations of Realism and Idealism (Anti-Realism) About Mathematics § II. Mathematical Realism § III. Transcendental Phenomenological Idealism § IV. Mind-Independence and Mind-Dependence in Formulations of Mathematical Realism § V. Compatibility or Incompatibility? § VI. Brief Interlude: Where to Place Gödel, Brouwer, and Other Mathematical Realists and Idealists in our Schematization? § VII. A Conclusion and an Introduction § References
20 21 22
PLATONISM, PHENOMENOLOGY, AND INTERDERIVABILITY
23
Guillermo E. Rosado Haddock § I. Introduction § II. Phenomenology, Constructivism and Platonism § III. Interderiva
Data Loading...