Photopolymers: Photoresist Materials, Processes, and Applications Kenichiro Nakamura

  • PDF / 270,104 Bytes
  • 1 Pages / 585 x 783 pts Page_size
  • 100 Downloads / 257 Views

DOWNLOAD

REPORT


book, you can extrapolate to more diverse research topics, but some broader examples would have been more helpful. Unfortunately, the book does not include the answers to the study problems. For people who have been out of the classroom for a long time, these would be very helpful. The answers are available online as “instructor resources” from Cambridge, but they are locked for instructors. I attempted to sign up for an instructor resources account, but then stopped when they asked for my course name and my website for verification of my position as an instructor (which I am

Photopolymers: Photoresist Materials, Processes, and Applications Kenichiro Nakamura CRC Press, 2014 189 pages, $149.95 ISBN 978-1-4665-1728-8

T

his book is a toolbox for individuals needing practical knowledge in the area of photopolymers and photoresist materials. It contains practical guidance in chemistry, fabrication, and industrial reduction-to-practice of photopolymer technology. The volume is comprised of five chapters. A major theme of the book is the relationship between photopolymer technology and the increasing miniaturization of electronic and mechanical devices. Chapter 1 discusses the basic idea of photopolymerization. After a brief introduction to photochemistry, there is a discussion of radical polymerization. The author gives extensive tables of monofunctional, bifunctional, and multifunctional monomers. There are similar lists of various initiators and inhibitors. There is also discussion of cationic polymerization, photocross-linking, and photoscission of polymers. Helpful tables giving representative photopolymer formulations are included. The chapter includes an extensive discussion of recommended

polymers for various user needs, such as high or low refractive index, hardness, and hydrophobicity. If the reader has a specific application in mind, it is easy to search the chapter and find a system that will meet these requirements. Chapters 2 and 3 address chemically amplified resists as a method for meeting the requirements for nanoscale resolution in photopolymerization. Chapter 2 provides a general discussion of the chemical amplification process parameters such as optical absorption coefficients, etching and dissolution rates, and their influence on pattern profiles. Tables of photoacid generators and their physical properties are included. Chapter 3 analyzes chemical amplification from the lithography perspective and describes the relationship between resolution and depth of focus as a function of numerical aperture and wavelength. The author then presents several lithography techniques, including immersion lithography, double patterning, extreme ultraviolet lithography, and direct self-assembly.

not). Having part of the book as a locked online resource seems to diminish both the long-term prospects for this as a hardcover book and the promise that the book could be a good self-study guide. While the book will certainly be a valuable tool for instructors looking for a lucid guide to classic surface thermodynamics,