1-Dimensional Cohen-Macaulay Rings

  • PDF / 11,481,103 Bytes
  • 168 Pages / 483 x 720 pts Page_size
  • 93 Downloads / 172 Views

DOWNLOAD

REPORT


327 Eben Matlis Northwestern University, Evanston, IL/USA

1-Dimensional Cohen-Macaulay Rings

Springer-Verlag Berlin. Heidelberg • New York 1973

A M S Subject Classifications (1970): 13-02, 13Cxx, 13E05, 1 3 E l 0 , 13F05, 1 3 H x x

I S B N 3-540-06327-7 Springer-Verlag B e r l i n . H e i d e l b e r g . N e w Y o r k I S B N 0-387-06327-7 Springer-Verlag N e w Y o r k " H e i d e l b e r g " Berlin This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher, © by Springer-Verlag Berlin - Heidelberg 1973. Library of Congress Catalog Card Number 73-80869. Printed in Germany. Offsetdruck: Julius Bettz, Hemsbach/Bergstr.

TABLE Chapter

I

h-Divisible Chapter

and C o t o r s i o n

Chapter

Extensions

11

. . . . . . . . . . . . . . . . . . . . . .

28

IV

Localizations Chapter

. . . . . . . . . . . . . . . . . . . . . . . . . .

34

V

Artinian Chapter

Divisible

Modules . . . . . . . . . . . . . . . . . . . .

42

Vi

Strongly Chapter

Unramified

Ring Extensions

. . . . . . . . . . . . . . .

56

VII

Closed

Chapter

Components

of R . . . . . . . . . . . . . . . . . . . .

68

Modules . . . . . . . . . . . . . . . . . . . . .

79

VIII

Simple

Divisible

Chapter

IX

Semi-Simple Chapter

and U n i s e r i a l

Divisible

Modules

. . . . . . . . . . .

85

X

Integral

Chapter

Closure . . . . . . . . . . . . . . . . . . . . . . .

90

XI

Primary

Chapter

Decomposition

. . . . . . . . . . . . . . . . . . . .

96

Ring . . . . . . . . . . . . . . . . . . .

103

XII

The F i r s t Chapter

Neighbourhood

XIII

Gorenstein Chapter

Rings . . . . . . . . . . . . . . . . . . . . . . . . .

Chapter

116

XIV

Multiplicities

The

I

III

Chapter

The

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

Compatible

The

Modules

II

Completions

The

OF C O N T E N T S

. . . . . . . . . . . . . . . . . . . . . . . . . .

126

Ideal

141

XV

Canonical

of R . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . .

153

Index

155

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To

Margarita Hill Matlis

INTRODUCTION The purpose Artinian ring,

of these notes

modules

is to present

over a 1-dimensional,

a structure

Noetherian,

and to show that m a n y of the properties

derived

from a knowledge

to recapture Macaulay

of this theory.

m a n y of the known

results

rings by these techniques,

Thus we have a new and unifying &mining

a category

of modules

theory for

Cohen-Macaulay

of such a ring may be

In fact, we shall be able

about

1-dimensional

and find

Cohen-

some new ones