Adaptive Motion of Animals and Machines

• Motivation It is our dream to understand the principles of animals’ remarkable ability for adaptive motion and to transfer such abilities to a robot. Up to now, mechanisms for generation and control of stereotyped motions and adaptive motions in well-kn

  • PDF / 8,119,962 Bytes
  • 297 Pages / 433.709 x 651.965 pts Page_size
  • 84 Downloads / 204 Views

DOWNLOAD

REPORT


Hiroshi Kimura, Kazuo Tsuchiya, Akio Ishiguro, Hartmut Witte (Editors)

Adaptive Motion of Animals and Machines

With 241 Figures

ABC

Hiroshi Kimura Graduate School of Information Systems University of Electro-Communications 1-5-1 Chofu-ga-oka, Chofu, Tokyo 182-8585, Japan Kazuo Tsuchiya Department of Aeronautics and Astronautics Graduate School of Engineering Kyoto University Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan Akio Ishiguro Department of Computational Science and Engineering Graduate School of Engineering Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan Hartmut Witte Department of Biomechatronics Faculty of Mechanical Engineering Technical University of Ilmenau Pf 10 05 65, D-98684 Ilmenau, Germany

Library of Congress Control Number: 2005936106 ISBN-10 4-431-24164-7 Springer-Verlag Tokyo Berlin Heidelberg New York ISBN-13 978-4-431-24164-5 Springer-Verlag Tokyo Berlin Heidelberg New York Printed on acid-free paper © Springer-Verlag Tokyo 2006 Printed in Japan This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Springer is a part of Springer Science+Business Media springeronline.com Printing and binding: Hirakawa Kogyosha, Japan

Preface

• Motivation It is our dream to understand the principles of animals’ remarkable ability for adaptive motion and to transfer such abilities to a robot. Up to now, mechanisms for generation and control of stereotyped motions and adaptive motions in well-known simple environments have been formulated to some extent and successfully applied to robots. However, principles of adaptation to various environments have not yet been clarified, and autonomous adaptation remains unsolved as a seriously difficult problem in robotics. Apparently, the ability of animals and robots to adapt in a real world cannot be explained or realized by one single function in a control system and mechanism. That is, adaptation in motion is induced at every level from the central nervous system to the musculoskeletal system. Thus, we organized the International Symposium on Adaptive Motion in Animals and Machines (AMAM) for scientists and engineers concerned with adaptation on various levels to be brought together to discuss principles at each level and to investigate principles governing total systems. • History AMAM started in Montreal (Canada) in August 2000. It was organized by H. Kimura (Japan), H. Witte (Germany), G. Taga (Japan), and K. Osuka (Japan), who had agreed that having a small symposium on motion control, with people from several fields coming together to discuss specific issues, was worthwhile.