Adsorption and Phase Behaviour in Nanochannels and Nanotubes

Channels of nanotubular dimensions exist in a variety of materials (examples are carbon nanotubes and the nanotubular channels of zeolites and zeotypes) and show promise for numerous applications due to their unique properties. One of their most important

  • PDF / 9,467,341 Bytes
  • 301 Pages / 439.37 x 666.142 pts Page_size
  • 62 Downloads / 159 Views

DOWNLOAD

REPORT


Lawrence J. Dunne · George Manos Editors

Adsorption and Phase Behaviour in Nanochannels and Nanotubes

123

Editors Prof. Lawrence J. Dunne London South Bank University Department of Engineering Systems 103 Borough Rd. London United Kingdom SE1 0AA [email protected]

Dr. George Manos University College London Dept. Chemical Engineering Torrington Place London United Kingdom WC1E 7JE [email protected]

ISBN 978-90-481-2480-0 e-ISBN 978-90-481-2481-7 DOI 10.1007/978-90-481-2481-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009930956 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book is a collection of articles reviewing selected aspects of molecular adsorption and phase behaviour in nanoporous materials, from both experimental and theoretical perspectives. In a series of chapters written by some of the most active contributors to the field selected problems and experimental and theoretical strategies for studying adsorption in materials containing nanopores and nanochannels are described. Particular emphasis is given to the results of theoretical investigations and simulations of adsorption, including mixtures, in zeolites and carbon nanotubes, while other chapters review diffusion and polymer adsorption in such materials. Water adsorption in a nanopore as a model for biological membrane channels is also discussed. The book is developed out of our interest in the statistical mechanics of adsorption and our diverse interests in zeolites and carbon networks. From the outset we have been quite prepared to have overlapping contributions with different perspectives. The themes which may overlap in various chapters include: I. Nanotubes (i) Adsorption isotherms on nanotubes (ii) Theory/simulation of adsorption on nanotubes (iii) Gas adsorption in nanotubes (iv) Water structure in nanotubes (v) Polymers in nanotubes II. Zeolites/Zeotypes (i) Experimental techniques to study diffusion in zeolites (ii) Adsorption of mixtures in zeolites (iii) Structural studies of liquid adsorption in zeolites (iv) Statistical mechanical treatment of adsorption in microporous materials v

vi

Preface

(v) Molecular simulation of adsorption on zeolites (vi) Geometric and molecular shape effects in nanopore adsorption III. Phase Behaviour in Nanochannels and Confined Spaces (i) Freezing/melting in nanopores (ii) Vapour–liquid equilibrium in nanopores The book has been compiled with the specialist reader in mind but general introductions are given and the principles and strategies underpinni