Alkaliphilic Prokaryotes

Alkaliphilic bacteria are widely distributed extremophiles, some of which grow in alkaline niches in which the pH is above 12. These niches include alkaline soda lakes, which are found throughout the world, providing natural enrichments for an impressivel

  • PDF / 1,596,727 Bytes
  • 30 Pages / 595.276 x 790.866 pts Page_size
  • 51 Downloads / 231 Views

DOWNLOAD

REPORT


Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 Ecology and Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Natural Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Industrial and Other Environments of Man-Made Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Global Adaptations in Alkaliphiles . . . . . . . . . . . . . . . . . . . . . . . . 446 Alkaliphiles Have Generally Lower Protein Isoelectric Points Than In Neutralophiles . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Buffering Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Last Resort: Mobile Elements to Introduce Further Potentially Adaptive Change? . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Cell Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 Secondary Cell Wall Polymers (SCWPs) . . . . . . . . . . . . . . . . 449 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 Bioenergetics of Alkaliphilic Bacteria . . . . . . . . . . . . . . . . . . . . . 450 Applications of Alkaliphiles to Biotechnology . . . . . . . . . . . . . 462 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Introduction and Definitions Introduction Alkaliphilic prokaryotes, in their rich phylogenetic diversity and metabolic versatility, are central participants in useful bioprocessing settings, such as sulfide-removing bioreactors (Sorokin et al. 2008; Sarethy et al. 2011). They have potential bioremediation capacity and are a major resource for enzymes that have many different applications to biotechnology (Horikoshi 1999; Fujinami and Fujisawa 2010; Sarethy et al. 2011). Often, such enzymes come from ‘‘polyextremophiles’’ whose exoenzymes, like the growth of their bacterial hosts, are

also thermoresistant or cold resistant and/or salt resistant, i.e., from thermoalkaliphiles, psychrophilic alkaliphiles, or haloalkaliphiles (Yumoto et al. 2002, 2004; Wiegel and Kevbrin 2004; Mesbah and Wiegel 2008). With increasing numbers of complete alkaliphile genome sequences, identification of genes encoding such enzymes is greatly facilitated. Further, protein engineering of alkaliphile enzymes is increasingly used to enhance the useful properties of a