ANGEL: efficient, and effective, node-centric community discovery in static and dynamic networks

  • PDF / 1,212,916 Bytes
  • 23 Pages / 595 x 794 pts Page_size
  • 118 Downloads / 217 Views

DOWNLOAD

REPORT


RESEARCH

Applied Network Science

Open Access

ANGEL: efficient, and effective, node-centric community discovery in static and dynamic networks Giulio Rossetti Correspondence: [email protected] KDD-Lab, ISTI-CNR, Pisa, Italy

Abstract Community discovery is one of the most challenging tasks in social network analysis. During the last decades, several algorithms have been proposed with the aim of identifying communities in complex networks, each one searching for mesoscale topologies having different and peculiar characteristics. Among such vast literature, an interesting family of Community Discovery algorithms, designed for the analysis of social network data, is represented by overlapping, node-centric approaches. In this work, following such line of research, we propose ANGEL, an algorithm that aims to lower the computational complexity of previous solutions while ensuring the identification of high-quality overlapping partitions. We compare ANGEL, both on synthetic and real-world datasets, against state of the art community discovery algorithms designed for the same community definition. Our experiments underline the effectiveness and efficiency of the proposed methodology, confirmed by its ability to constantly outperform the identified competitors. Keywords: Complex networks, Dynamic networks, Community discovery

Introduction Community discovery (henceforth CD), the task of decomposing a complex network topology into meaningful node clusters, is one of the oldest and most discussed problems in complex network analysis (Coscia et al. 2011; Fortunato 2010). One of the main reasons behind the attention it has received during the last decades lies in its intrinsic complexity, strongly tied to its overall ill-posedness. Indeed, complex networks researchers agree that it is not possible to provide a single and unique formalization that covers all the possible characteristics a community partition may satisfy. Usually, every CD approach is designed to provide a different point of view on how to partition a graph: in this scenario, the solutions proposed by different authors were often proven to perform well when specific assumptions can be made on the analyzed topology. Nonetheless, decomposing a complex structure in a set of meaningful components represents per se a step required by several analytical tasks. Such peculiarity has lead to the definition of several “meta” community definitions, often tied to specific analytical needs. For instance, classic works © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material