Automatic leaking carrier canceller adjustment techniques

  • PDF / 1,282,942 Bytes
  • 15 Pages / 595 x 794 pts Page_size
  • 89 Downloads / 140 Views

DOWNLOAD

REPORT


RESEARCH

Open Access

Automatic leaking carrier canceller adjustment techniques Gregor Lasser1* , Robert Langwieser2 and Christoph F Mecklenbr¨auker2

Abstract In this contribution, four automatic adjustment algorithms for leakage carrier cancellation in radio frequency identification (RFID) readers are compared: full search, gradient search, fast and direct I/Q algorithms. Further, we propose two enhanced adjustment procedures. First, we analytically calculate the performance of the fast adjustment algorithm in the presence of noise and derive its theoretical bias. We compare the theoretical results with the numerical results from accompanying simulations. Further, we evaluate the performance of these algorithms based on real-world measurements acquired with our RFID testbed. Finally, we propose and discuss the merits of two enhanced adjustment procedures based on the fast adjustment algorithm. The fast adjustment procedure with bipolar probing signals achieves the isolation gain of the (much slower) gradient search algorithm at the expense of a mean penalty of 0.48 dB. We observe that the fast adjustment aided gradient algorithm requires 72% less steps than the gradient search algorithm in our measurements. 1 Introduction Radio frequency identification (RFID) is a technique to remotely identify and detect objects that are branded with a special transponder called RFID tag [1]. RFID systems operate at several frequency bands and use different methods to transfer data and energy between an RFID reader and the tags. In this work, we will focus on RFID systems that use electromagnetic waves for communications, especially ultrahigh frequency (UHF) RFID systems. An RFID tag consists of an antenna that is connected to an electronic circuit, which in most cases is built on an integrated circuit. Many RFID systems use the so-called passive or semi-passive tags that do not use an internal power source to communicate with the RFID reader. They instead use backscattering, a technique which is based on the fact that the amplitude and phase of the waves scattered from an antenna depend on the antenna termination impedance. Thus, the tag sends data to the reader by modulating the impedance that the tag chip presents to the antenna terminals [2,3]. While this backscattering technique, seen from the tag, enables remotely powered *Correspondence: [email protected] 1 Institute of Telecommunication, Vienna University of Technology, 1040,Vienna, Austria Full list of author information is available at the end of the article

communication, it necessitates a constant carrier signal to be transmitted from the RFID reader during the tag to reader data transfer [4-6]. Therefore, the RFID reader has to transmit a carrier signal while it simultaneously receives a weak backscattered signal from the tag. To separate transmit an receive paths, readers either use separate transmit and receive antennas or use circulators or directional couplers. In analogy to radar systems, the first case is called bistatic, while the second one is call