Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and change
- PDF / 2,348,232 Bytes
- 19 Pages / 595.276 x 790.866 pts Page_size
- 46 Downloads / 149 Views
RESEARCH
Open Access
Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication Ángel-David Popa-Báez1,2*, Siu Fai Lee1,2, Heng Lin Yeap2, Shirleen S. Prasad1,2, Michele Schiffer3, Roslyn G. Mourant2, Cynthia Castro-Vargas1,2, Owain R. Edwards1,2, Phillip W. Taylor1 and John G. Oakeshott1,2
Abstract Background: The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a “common garden” approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. Results: Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. Conclusions: Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication. Keywords: Bactrocera tryoni, Heat resistance, Desiccation resistance, Ecotypic variation, Domestication effects
* Correspondence: [email protected] 1 Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia 2 Land and Water, CSIRO, Canberra, ACT 2601, Australia Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by/3.0/igo/) which permits unrestricted use, distribution, and reproduction in any medium, provided appropriate credit to the original author(s) and the source is given.
Popa-Báez et al. BMC Genetics 2020, 21(Suppl 2):135
Background Climate plays a major role in determining the geographical distribution of species, and their climate adaptability is considered a key component of their expansion and i
Data Loading...