Development of a Concussion Risk Function for a Youth Population Using Head Linear and Rotational Acceleration
- PDF / 1,163,671 Bytes
- 12 Pages / 593.972 x 792 pts Page_size
- 67 Downloads / 162 Views
Annals of Biomedical Engineering (Ó 2019) https://doi.org/10.1007/s10439-019-02382-2
Original Article
Development of a Concussion Risk Function for a Youth Population Using Head Linear and Rotational Acceleration EAMON T. CAMPOLETTANO ,1 RYAN A. GELLNER,1 ERIC P. SMITH,2 SRINIDHI BELLAMKONDA,3 CASEY T. TIERNEY,3 JOSEPH J. CRISCO,3 DEREK A. JONES,4 MIREILLE E. KELLEY,4 JILLIAN E. URBAN,4 JOEL D. STITZEL,4 AMARIS GENEMARAS,5 JONATHAN G. BECKWITH,5 RICHARD M. GREENWALD,5 ARTHUR C. MAERLENDER,6 PER GUNNAR BROLINSON,7 STEFAN M. DUMA,1 and STEVEN ROWSON1 1 Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; 2Department of Statistics, Virginia Tech, Blacksburg, VA, USA; 3Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA; 4Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA; 5Simbex, Lebanon, NH, USA; 6Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE, USA; and 7Edward Via Virginia College of Osteopathic Medicine, Blacksburg, VA, USA
(Received 24 May 2019; accepted 9 October 2019) Associate Editor Thurmon E. Lockhart oversaw the review of this article.
Abstract—Physical differences between youth and adults, which include incomplete myelination, limited neck muscle development, and a higher head-body ratio in the youth population, likely contribute towards the increased susceptibility of youth to concussion. Previous research efforts have considered the biomechanics of concussion for adult populations, but these known age-related differences highlight the necessity of quantifying the risk of concussion for a youth population. This study adapted the previously developed Generalized Acceleration Model for Brian Injury Threshold (GAMBIT) that combines linear and rotational head acceleration to model the risk of concussion for a youth population with the Generalized Acceleration Model for Concussion in Youth (GAM-CY). Survival analysis was used in conjunction with head impact data collected during participation in youth football to model risk between individuals who sustained medically-diagnosed concussions (n = 15). Receiver operator characteristic curves were generated for peak linear acceleration, peak rotational acceleration, and GAM-CY, all of which were observed to be better injury predictors than random guessing. GAM-CY was associated with an area under the curve of 0.89 (95% confidence interval: 0.82–0.95) when all head impacts experienced by the concussed players were considered. Concussion tolerance was observed to be lower for youth athletes, with average peak linear head acceleration of 62.4 ± 29.7 g compared to 102.5 ± 32.7 g for adults and average peak rotational head acceleration of 2609 ± 1591 rad/s2 compared to 4412 ± 2326 rad/s2. These
Address correspondence to Eamon T. Campolettano, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA. Electronic mail: [email protected]
data provide further ev
Data Loading...