Divisors on N-interior G-algebras
Let G be a finite group; our main purpose is the study of the group algebra OG and of any 0G-module M or, equivalently, any group homomorphism G → Endo(M)*, where M is an O -free O -module. More generally, we may consider any group homomorphism G → A*, wh
- PDF / 1,120,078 Bytes
- 9 Pages / 439.37 x 666.142 pts Page_size
- 100 Downloads / 240 Views
i~
C )t -1--;tHtjf;
C ~
~1fJ~.£~~I!I)t,?;Jfjt
jf .fC. ~ OC, ,fP 1£ ~ oc-~t M, ~;f/G)t iJt, 1£ ~ jf ~ ~ C --7 Endo(M)*, $,.'f M )t1--mlb o-~t. ~--Rt*-iJt, n~ ~ .Lti£-~jf~~~ C
$,.'f A
Data Loading...