Finite Rotation Shells Basic Equations and Finite Elements for Reiss
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements, not included in standard textbooks on finite elements, are addressed. Key features include: several sets of 3D equ
- PDF / 4,552,185 Bytes
- 492 Pages / 282.369 x 476.051 pts Page_size
- 8 Downloads / 274 Views
		    Finite Rotation Shells Basic Equations and Finite Elements for Reissner Kinematics February 25, 2010
 
 Springer
 
 V
 
 To my wife Ewa, my parents, and my children.
 
 Contents
 
 I
 
 PRELIMINARIES
 
 1
 
 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Subject of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 
 2 2 4
 
 2
 
 Operations on tensors and their representations . . . . . . . . 2.1 Cartesian bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Normal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Gradients and derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 
 6 6 10 19
 
 II
 
 SHELL EQUATIONS
 
 3
 
 Rotations for 3D Cauchy continuum . . . . . . . . . . . . . . . . . . . 3.1 Polar decomposition of deformation gradient . . . . . . . . . . . . . 3.2 Rotation Constraint equation . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Interpretation of rotation Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Rate form of RC equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Rotations calculated from the RC equation . . . . . . . . . . . . . .
 
 22 22 24 26 28 29
 
 4
 
 3D 4.1 4.2 4.3 4.4 4.5 4.6
 
 formulations with rotations . . . . . . . . . . . . . . . . . . . . . . . . . Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-F formulation for nominal stress . . . . . . . . . . . . . . . . . . . . . . 3-F formulation for nominal stress . . . . . . . . . . . . . . . . . . . . . . 3-F and 2-F formulations for Biot stress . . . . . . . . . . . . . . . . . 3-F and 2-F formulations for second Piola–Kirchhoff stress 2-F formulation with unconstrained rotations . . . . . . . . . . . .
 
 30 31 37 40 42 45 48
 
 Contents
 
 VII
 
 5
 
 Basic geometric definitions for shells . . . . . . . . . . . . . . . . . . . 5.1 Coordinates and position vector . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Basic geometric definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Example: Geometrical description of cylinder . . . . . . . . . . . .
 
 49 49 52 57
 
 6
 
 Shells with Reissner kinematics and drilling rotation . . . 6.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Rotation Constraint for shells . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Shell strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Non-symmetric relaxed right stretch strain . . . . . . . . . 6.3.2 Symmetric relaxed right stretch strain . . . . . . . . . . . . . 6.3.3 Green strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Transverse shear strains satisfying RC. Kirchhoff kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Rotation as an intermediate variable sy		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	