Fluorescent Composites Combining Multiple Sensing and Imaging Modalities

Smart nanoscale composites can be designed not only for performing functions associated with absorption and emission of light. They can comprise other modalities that are required for obtaining and analysis of information using quite different chemical st

  • PDF / 910,369 Bytes
  • 20 Pages / 439.37 x 666.142 pts Page_size
  • 91 Downloads / 174 Views

DOWNLOAD

REPORT


Fluorescent Composites Combining Multiple Sensing and Imaging Modalities

Smart nanoscale composites can be designed not only for performing functions associated with absorption and emission of light. They can comprise other modalities that are required for obtaining and analysis of information using quite different chemical structures and different instrumentation. This information can be complementary to that obtained by optical methods and can be efficiently used in sensing, but mostly in imaging. The combination of fluorescence probing with X-ray and NMR methods and also based on magnetic properties will be discussed below. Regarding imaging, the methods based on X-rays and NMR allow deep penetration into human tissues, which is not possible with optical methods. We demonstrate the possibilities to realize this coupling by designing the composites that on supramolecular or nanoscale level combine the probing and contrasting efficiencies for different modalities. In the last Section “Sensing and thinking” I encourage the reader to think on possibilities of application of such multimodality-based approach. In previous Chapters of this book we analyzed many possibilities to design optimal fluorescence reporters for different scientific and practical needs. We observed that with smart nanocomposites often incorporating organic and inorganic components, one can achieve dramatic improvement. Many important developments are observed. These nanocomposites demonstrate dramatically increased brightness, the ability to concentrate emission on particular luminophores (antenna effect), to shifting the emission spectrum to a desired spectral position (wavelength conversion). The emission anisotropy and lifetime can be modulated in broad ranges. New sensing technologies were devised on this basis, which include multiplexing and multicolor coding in suspension arrays. In parallel, other methods for research and practical application, such as based on X-rays and NMR, develop. They require quite different instrumentation and data analysis. The atomic and molecular structures that are the source of information are quite different. What is the need to combine them with fluorescence sensing and imaging? The answer is very simple. Each of these methods brings often complementary information, and systematic analysis based on its assembling and systematic analysis brings new knowledge. Such need of complementary information is especially © Springer Nature Switzerland AG 2020 A. P. Demchenko, Introduction to Fluorescence Sensing, https://doi.org/10.1007/978-3-030-60155-3_12

483

484

12 Fluorescent Composites Combining Multiple Sensing …

X-ray CT

NMR imaging

+

+

Luminescence

MulƟmodal agents Fig. 12.1 Illustration of multimodal approach combining luminescence imaging with the Xray computer tomography and NMR imaging. The applied multimodal contrast agents serve for obtaining images that use the combination of these methods

seen in imaging of living cells and tissues. Fluorescence is not the only method for studying the living