Fracture stress and microstructure of an alpha-beta titanium alloy
- PDF / 464,514 Bytes
- 3 Pages / 612 x 792 pts (letter) Page_size
- 5 Downloads / 218 Views
A
Fig. 1--Graphite p y e n o m e t e r for density m e a s u r e m e n t s on liquid b i s m u t h .
I
I
I
I
I
I
I
I
I
I
I
I
........ ~176 40(~
==
4o
3eo
c,
Hesson ond Others Herczynsko
x
Lucoe
o\o
9
o
360
}~ 340 320
~
~ o
aoo
e
2go I
a'ae
t
964
I a'a6
I
9"88
L
990
I
9"92
DENSITY,
I
9"94
L
9.96
"" I
9-9e
~
I
i0"00
1. H. R. Thresh, A. F. Crawley, and D. W. G. White: Trans. TMS-AIME, 1968, vol. 242, pp. 819-22. 2. A. F. Crawley: Trans. TMS-AIME, 1968, vol. 242, pp. 859-62. 3. A. F. Crawley: Trans. TMS-AIME, 1968, vol. 242, pp. 2309-I 1. 4. A. F. Crawley: Trans. TMS-AIME, 1968, vol. 242, pp. 2237-8. 5. H. R. Thresh, A. F. Crawley, and D. W. G. White: PhysicalMetallurgyDivision Internal Report PM.R.67-4, MinesBranch, Department of Energy, Minesand Resources, Ottawa, Canada, 1967. 6. Y. Matuyama: Sci. Rept. TohokuImp. Univ., 1929, vol. 18, pp. 19-46. 7. T. R. Hogness:J. Am. Chem. Soc., 1921, vol. 43, pp. 1621-28. 8. J. C. Hesson, H. ShJmotake, and J. M. Tralmer: J. Metals, 1960, vol. 20, no. 2, pp. 6-7. 9. E. Herczynska:Naturwiss, 1966, vol. 47, pp. 200-01. 10. L.D. Lucas: Mem. ScL Rev. Met., 1964, vol. 61, pp. 1-24. 11. A. F. Crawley and D. W. G. White: Trans. TMS-AIME, 1968, vol. 242, pp. 1483-84.
o o
I
10"0Z
i]
10"04
9/c~
Fig. 2--Density of liquid b i s m u t h as function of t e m p e r a t u r e .
expansion on freezing would shatter the graphite pycnometer thus entailing time-consuming manufacture a n d m e a s u r e m e n t o f a new p y e n o m e t e r f o r e a c h r u n . F i g . 1 s h o w s t h e d e s i g n of p y c n o m e t e r u s e d i n t h i s p r e s e n t w o r k . T h e t o p of t h e o r i g i n a l t h r e a d e d c a p ~' 2 has been machined out and a thin graphite plate is f i t t e d i n p o s i t i o n to e n c l o s e t h e p y c n o m e t r i c v o l u m e . This plate was about 0.035 in. thick, with parallel surfaces. An annular groove B on the top surface ensured that the plate would shatter uniformly when the bismuth so lidified. To d e t e r m i n e d e n s i t i e s , t h e f i r s t s t e p i s to l o a d two charges C and D of solid bismuth. The pycnometer is then held in the densitometer under a vacuum of 5 x 10 -8 t o r t a n d t h e t e m p e r a t u r e r a i s e d . W h e n t h e b i s muth has melted, contracted, and reached the desired temperature, the metal C is moved over the orifice in p l a t e A a n d a l l o w e d to f i l l t h e p y c n o m e t e r . W h e n t h e system has equilibrated, metal remaining in C is rem o v e d to o n e s i d e a n d t h e s y s t e m a l l o w e d to c o o l . T h i s p r o c e d u r e i s s i m i l a r to t h a t u s e d to s t a n d a r d i z e the pycnometer using mercury as described in art e a r l i e r Mines Branch report. 5 The validity of the technique was also checked by measuring the density of liquid lead using an initial charge insufficient to create an excess metal overflow on melting. In Fig. 2, the experimental results have been plotted. A least squares analysis on t
Data Loading...