High-Temperature Environmental Degradation Behavior of Ultrahigh-Temperature Ceramic Composites

In recent years, there is a very strong interest for the development of zirconium and hafnium diboride-based ultrahigh-temperature composites (UHTCs) for use in nose cones and leading edges of hypersonic vehicles, which are subjected to high temperatures

  • PDF / 1,956,674 Bytes
  • 36 Pages / 439.37 x 666.142 pts Page_size
  • 45 Downloads / 243 Views

DOWNLOAD

REPORT


31

Case Examples of Zirconium and Hafnium Diboride R. Mitra, M. Mallik, and Sunil Kashyap

Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Design of Materials for Protection Against Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermodynamics and Kinetics of Environmental Degradation by Oxidation of ZrB2- and HfB2-Based Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidation Behavior of ZrB2- and HfB2-Based Composites Under Standard Test Conditions in Laboratory Air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-isothermal Oxidation Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isothermal Oxidation Behavior for Short and Long Durations of Exposure . . . . . . . . . . . . . . Cyclic Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidation Behavior During Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidation in Extreme Environments with High Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidation During Arc Jet Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidation During Ablation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oxidation Under Water Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1222 1223 1224 1226 1226 1229 1239 1241 1244 1244 1245 1252 1252 1253

R. Mitra (*) Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India e-mail: [email protected] M. Mallik Department of Metallurgical and Materials Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, India e-mail: [email protected] S. Kashyap Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India e-mail: [email protected] © Springer Nature Switzerland AG 2020 Y. R. Mahajan, R. Johnson (eds.),