Introduction to Nuclear Energy

One may ask the question: Why a book devoted to alternative energy should have three chapters on nuclear energy? After all nuclear power plants and nuclear energy have been the pariahs in every environmentalist’s mind for decades. The accidents at the Thr

  • PDF / 2,339,725 Bytes
  • 31 Pages / 439.37 x 666.142 pts Page_size
  • 77 Downloads / 231 Views

DOWNLOAD

REPORT


Introduction to Nuclear Energy

Abstract One may ask the question: Why a book devoted to alternative energy should have three chapters on nuclear energy? After all nuclear power plants and nuclear energy have been the pariahs in every environmentalist’s mind for decades. The accidents at the Three-Mile Island, Chernobyl and Fukushima Dai-ichi power plants have contributed to the horrific images of large-scale environmental disasters. The answer to this question is very simple: Global warming, caused by the anthropogenic emission of carbon dioxide is a very serious threat for our planet. Nuclear power plants have the capability to produce a significant part of our electric power at relatively low cost and without any carbon dioxide emissions. A case in point: If in 2008 the United States would have produced 50%, of its electric power from nuclear energy, instead of approximately 25% it actually produced, the country would have exceeded by 150% its quota from the Kyoto Protocol without any other changes in the rest of its energy mix. Other OECD countries, such as France and Japan produce more than 70% of their electricity from nuclear power plants. The fundamental concepts of atomic physics with emphasis on the nuclear fission reactions are given in this chapter. At first, the structure of the atom is explained, basic definitions of the atom and the subatomic particles are given succinctly and useful numbers pertaining to the atoms and the nuclear reactions are calculated. Secondly, the nuclear reactions are introduced and the physical principles governing these reactions are explained. Examples of nuclear reactions include radioactive decay and carbon dating. Thirdly, the several ways of interaction of neutrons with nuclei are explained and fission is introduced. The subjects of nuclear fission, chain reactions, nuclear fuels and thermal neutrons are explained in detail. The role of the cross-sections of the naturally occurring nuclear fuels is explained in the fission process as well as in the sustenance of the chain reaction in conventional reactors. The neutron cycle in a nuclear reactor and the striving for the production and conservation of the thermal neutrons are elucidated. Fourthly, the basic concepts of fuel conversion and breeding are given as

E. E. (Stathis) Michaelides, Alternative Energy Sources, Green Energy and Technology, DOI: 10.1007/978-3-642-20951-2_4,  Springer-Verlag Berlin Heidelberg 2012

99

100

4 Introduction to Nuclear Energy

an introduction to breeder reactors. Finally, a few useful numbers are computed on the utilization of natural uranium as a fuel in the conventional nuclear reactors.

4.1 Elements of Atomic and Nuclear Physics Engineers seeking an insight into the operation of nuclear reactors are interested to know only the results of nuclear reactions and do not need to be concerned with the details of the complex theory of subatomic physics. For this reason a simplified depiction of atoms and nuclei will be given in this chapter, which is sufficient for the understanding of th