Large values of cusp forms on $$\mathrm {GL}_n$$ GL n
- PDF / 1,007,717 Bytes
 - 71 Pages / 439.37 x 666.142 pts Page_size
 - 94 Downloads / 230 Views
 
		    Selecta Mathematica New Series
 
 Large values of cusp forms on GLn Farrell Brumley1 · Nicolas Templier2
 
 © Springer Nature Switzerland AG 2020
 
 Abstract We establish the transition behavior of Jacquet–Whittaker functions on split semisimple Lie groups. As a consequence, we show that for certain finite volume Riemannian manifolds, the local bound for normalized Laplace eigenfunctions does not hold globally. Keywords Sup-norms · Maass forms · Whittaker functions · Oscillatory integrals · Lagrangian mappings · Pearcey function Mathematics Subject Classification Primary: 11F70; Secondary: 58K55
 
 Contents 1 Statement of results . . . . 2 Outline of proofs . . . . . . 3 Notation and preliminaries . 4 Reduction to local estimates 5 Rapid decay estimates . . . 6 Proof of Theorem 1.6 . . . 7 Lagrangian singularities . . 8 Proof of Theorem 1.4 . . . 9 Proof of Theorem 1.8 . . . 10 Proof of Theorem 1.9 . . . References . . . . . . . . . . .
 
 B
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 Nicolas Templier [email protected] Farrell Brumley [email protected]
 
 1
 
 Institut Galilée, Universite Paris 13, 93430 Villetaneuse, France
 
 2
 
 Department of Mathematics, Cornell University, Malott Hall, Ithaca, NY 14853-4201, USA 0123456789().: V,-vol
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 . . . . . . . . . . .
 
 63
 
 Page 2 of 71
 
 F. Brumley, N. Templier
 
 Let M be a complete d-dimensional Riemannian manifold without boundary. A central question in semiclassical analysis is to understand the concentration features of Laplacian L 2 -eigenfunctions  f = λ f , in relation with the geometry of M. A touchstone is the well-known bound of Hörmander [6,36] which implies that | f (x)|  λ
 
 d−1 4
 
  f 2 ,
 
 (A)
 
 where the multiplicative constant depends continuously on x ∈ M. This bound is local, being based on the principle that if an eigenfunction is large at a point, it remains so in a small neighborhood. When f is bounded globally on M, one may go further and compare the sup-norm  f ∞ = supx∈M | f (x)| with the L 2 -norm, as a function of λ. This boundedness is known to hold on any of the following three classes of manifolds: when both the sectional curvature and the injectivity radius of M are bounded [24]; under certain assumptions on the isoperimetr		
Data Loading...