Lie models of simplicial sets and representability of the Quillen functor

  • PDF / 616,302 Bytes
  • 46 Pages / 429.41 x 636.77 pts Page_size
  • 97 Downloads / 154 Views

DOWNLOAD

REPORT


LIE MODELS OF SIMPLICIAL SETS AND REPRESENTABILITY OF THE QUILLEN FUNCTOR

BY

Urtzi Buijs Departamento de Algebra, Geometr´ıa y Topolog´ıa, Universidad de M´ alaga M´ alaga, Ap. 59 29080, Spain e-mail: [email protected] AND

´lix Yves Fe Institut de Math´ematiques et Physique Universit´e Catholique de Louvain-la-Neuve Louvain-la-Neuve, Belgium e-mail: [email protected] AND

Aniceto Murillo Departamento de Algebra, Geometr´ıa y Topolog´ıa, Universidad de M´ alaga M´ alaga, Ap. 59 29080, Spain e-mail: [email protected] AND

´ Daniel Tanre D´epartement de Math´ematiques, UMR-CNRS 8524, Universit´e de Lille 1 Villeneuve d’Ascq Cedex 59655, France e-mail: [email protected]

Received May 29, 2017 and in revised form July 1, 2019

1

´ ´ U. BUIJS, Y. FELIX, A. MURILLO AND D. TANRE

2

Isr. J. Math.

ABSTRACT

Extending the model of the interval, we explicitly define for each n ≥ 0 a free complete differential graded Lie algebra Ln generated by the simplices of ∆n , with desuspended degrees, in which the vertices are Maurer–Cartan elements and the differential extends the simplicial chain complex of the standard n-simplex. The family {L• }n≥0 is endowed with a cosimplicial differential graded Lie algebra structure which we use to construct two adjoint functors SimpSet

o

L

/

DGL

h·i

given by hLi• = DGL(L• , L) and L(K) = limK L• . This new tool lets us −→ extend the Quillen rational homotopy theory approach to any simplicial set K whose path components are not necessarily simply connected. We prove that L(K) contains a model of each component of K. When K is a 1-connected finite simplicial complex, the Quillen model of K can be extracted from L(K). When K is connected then, for a perturbed differential ∂a , H0 (L(K), ∂a ) is the Malcev Lie completion of π1 (K). Analogous results are obtained for the realization hLi of any complete DGL.

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.

The BCH product and the Lawrence–Sullivan model for the interval . . . . . . . . . . . . . . . . . . . . . . .

3 7

2.

Sequences of compatible models of ∆

. . . . . . . . . . .

12

3.

Symmetric models of ∆ and the cosimplicial structure . .

21

4.

The realization functor and its adjoint . . . . . . . . . . .

23

5.

The L-model of K . . . . . . . . . . . . . . . . . . . . . .

29

6.

Differential graded Lie coalgebras and the Transfer Theorem 32

7.

The cosimplicial structure via a transfer . . . . . . . . . .

37

8.

Representability of the Quillen realization functor

40

9.

The Malcev completion of the fundamental group . . . . .

42

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

. . . .

Vol. TBD, 2020

LIE MODELS OF SIMPLICIAL SETS

3

Introduction In [18], R. Lawrence and D. Sullivan raise the following observation and subsequent general questions: the rational singular chains on a cellular complex are naturally endowed with a structure of cocommutative, coassociative infinity coalgebra and hence, taking the commutators of a “generalized bar constru