Morse Homology

1.1 Background The subject of this book is Morse homology as a combination of relative Morse theory and Conley's continuation principle. The latter will be useda s an instrument to express the homology encoded in a Morse complex associated to a fixed Mors

  • PDF / 16,969,594 Bytes
  • 243 Pages / 439 x 666 pts Page_size
  • 2 Downloads / 196 Views

DOWNLOAD

REPORT


Series Editors J. Oesterle A. Weinstein

Matthias Schwarz

Morse Homology

Springer Basel AG

Author: Matthias Schwarz ETHZentrum Mathematik 8092 Ziirich Switzerland

Library of Congress Cataloging-in-Publication Data Schwarz, Matthias, 1967Morse homology / Matthias Schwarz. p. cm. - (Progress in mathematics ; voI. 111) Inc1udes bibliographical references and index. ISBN 978-3-0348-9688-7 ISBN 978-3-0348-8577-5 (eBook) DOI 10.1007/978-3-0348-8577-5 1. Morse theory. 2. Homology theory. 1. TItle. II. Series: Progress in mathematics (Boston, Mass.) ; voI. 111. QA331.S43 1993 515'.73 - dc20 Deutsche Bibliothek Cataloging-in-Publication Data

Schwarz, Matthias: Morse homology / Matthias Schwarz. - Basel ; Boston ; Berlin Birkhăuser, 1993 (Progress in mathematics ; VoI. 111) ISBN 978-3-0348-9688-7 NE:GT

This work is subject to copyright. Ali rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 1993 Springer Basel AG Originally published by Birkhăuser Verlag Basel in 1993 Softcover reprint ofthe hardcover Ist edition 1993 Camera-ready copy prepared by the author Printed on acid-free paper produced of chlorine-free pulp

ISBN 978-3-0348-9688-7 987654321

Contents List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

viii

1 Introduction 1.1

1.2

Background...........

1

1.1.1

Classical Morse Theory

1

1.1.2

Relative Morse Theory.

5

1.1.3

The Continuation Principle

7

Overview . . . . . . . . . . . . . .

8

1.2.1

The Construction of the Morse Homology

1.2.2

The Axiomatic Approach

8 10

1.3

Remarks on the Methods

14

1.4

Table of Contents .

17

1.5

Acknowledgments.

18

2 The Trajectory Spaces 2.1

The Construction of the Trajectory Spaces.

21

2.2

Fredholm Theory . . . . . . . . . . . . . . .

29

2.2.1

The Fredholm Operator on the Trivial Bundle

29

2.2.2

The Fredholm Operator on Non-Trivial Bundles

39

2.2.3

Generalization to Fredholm Maps.

41

2.3

Transversality . . . . . . . . . . . .

41

2.3.1

The Regularity Conditions

42

2.3.2

The Regularity Results

49

..

CONTENTS

vi 2.4

2.5

Compactness . . . . . . . . . . . . . . . . . . . . .

51

2.4.1

The Space of Unparametrized Trajectories.

52

2.4.2

The Compactness Result for Unparametrized Trajectories 55

2.4.3

The Compactness Result for Homotopy Trajectories ..

63

2.4.4

The Compactness Result for A-Parametrized Trajectories

67

Gluing..............................

68

2.5.1

Gluing for the Time-Independent Trajectory Spaces

68

2.5.2

Gluing of Trajectories of the Time-Dependent Gradient Flow. . . . . . . . . . . . . . . . . . . .

96

Gluing for A-Parametrized Trajectories. . . . . . . . ..

99

2.5.3

3 Orientation

3.1

3.2

Orientation and Gluing in the Trivial Case 3.1.1

The Determinant Bundle .. . . . .

104

3.1.2

Gluing and Orientat