Morse Homology
1.1 Background The subject of this book is Morse homology as a combination of relative Morse theory and Conley's continuation principle. The latter will be useda s an instrument to express the homology encoded in a Morse complex associated to a fixed Mors
- PDF / 16,969,594 Bytes
- 243 Pages / 439 x 666 pts Page_size
- 2 Downloads / 235 Views
		    Series Editors J. Oesterle A. Weinstein
 
 Matthias Schwarz
 
 Morse Homology
 
 Springer Basel AG
 
 Author: Matthias Schwarz ETHZentrum Mathematik 8092 Ziirich Switzerland
 
 Library of Congress Cataloging-in-Publication Data Schwarz, Matthias, 1967Morse homology / Matthias Schwarz. p. cm. - (Progress in mathematics ; voI. 111) Inc1udes bibliographical references and index. ISBN 978-3-0348-9688-7 ISBN 978-3-0348-8577-5 (eBook) DOI 10.1007/978-3-0348-8577-5 1. Morse theory. 2. Homology theory. 1. TItle. II. Series: Progress in mathematics (Boston, Mass.) ; voI. 111. QA331.S43 1993 515'.73 - dc20 Deutsche Bibliothek Cataloging-in-Publication Data
 
 Schwarz, Matthias: Morse homology / Matthias Schwarz. - Basel ; Boston ; Berlin Birkhăuser, 1993 (Progress in mathematics ; VoI. 111) ISBN 978-3-0348-9688-7 NE:GT
 
 This work is subject to copyright. Ali rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 1993 Springer Basel AG Originally published by Birkhăuser Verlag Basel in 1993 Softcover reprint ofthe hardcover Ist edition 1993 Camera-ready copy prepared by the author Printed on acid-free paper produced of chlorine-free pulp
 
 ISBN 978-3-0348-9688-7 987654321
 
 Contents List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
 
 viii
 
 1 Introduction 1.1
 
 1.2
 
 Background...........
 
 1
 
 1.1.1
 
 Classical Morse Theory
 
 1
 
 1.1.2
 
 Relative Morse Theory.
 
 5
 
 1.1.3
 
 The Continuation Principle
 
 7
 
 Overview . . . . . . . . . . . . . .
 
 8
 
 1.2.1
 
 The Construction of the Morse Homology
 
 1.2.2
 
 The Axiomatic Approach
 
 8 10
 
 1.3
 
 Remarks on the Methods
 
 14
 
 1.4
 
 Table of Contents .
 
 17
 
 1.5
 
 Acknowledgments.
 
 18
 
 2 The Trajectory Spaces 2.1
 
 The Construction of the Trajectory Spaces.
 
 21
 
 2.2
 
 Fredholm Theory . . . . . . . . . . . . . . .
 
 29
 
 2.2.1
 
 The Fredholm Operator on the Trivial Bundle
 
 29
 
 2.2.2
 
 The Fredholm Operator on Non-Trivial Bundles
 
 39
 
 2.2.3
 
 Generalization to Fredholm Maps.
 
 41
 
 2.3
 
 Transversality . . . . . . . . . . . .
 
 41
 
 2.3.1
 
 The Regularity Conditions
 
 42
 
 2.3.2
 
 The Regularity Results
 
 49
 
 ..
 
 CONTENTS
 
 vi 2.4
 
 2.5
 
 Compactness . . . . . . . . . . . . . . . . . . . . .
 
 51
 
 2.4.1
 
 The Space of Unparametrized Trajectories.
 
 52
 
 2.4.2
 
 The Compactness Result for Unparametrized Trajectories 55
 
 2.4.3
 
 The Compactness Result for Homotopy Trajectories ..
 
 63
 
 2.4.4
 
 The Compactness Result for A-Parametrized Trajectories
 
 67
 
 Gluing..............................
 
 68
 
 2.5.1
 
 Gluing for the Time-Independent Trajectory Spaces
 
 68
 
 2.5.2
 
 Gluing of Trajectories of the Time-Dependent Gradient Flow. . . . . . . . . . . . . . . . . . . .
 
 96
 
 Gluing for A-Parametrized Trajectories. . . . . . . . ..
 
 99
 
 2.5.3
 
 3 Orientation
 
 3.1
 
 3.2
 
 Orientation and Gluing in the Trivial Case 3.1.1
 
 The Determinant Bundle .. . . . .
 
 104
 
 3.1.2
 
 Gluing and Orientat		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	