Multiscale Modelling of Damage and Fracture Processes in Composite Materials

Various types of composites are used in engineering practice. The most important are fibrous compositesy laminates and materials with a more complicated geometry of reinforcement in the form of short fibres and particles of various properties^ shapes and

  • PDF / 15,207,800 Bytes
  • 315 Pages / 481.9 x 686 pts Page_size
  • 2 Downloads / 237 Views

DOWNLOAD

REPORT


CISM COURSES AND LECTURES

Series Editors: The Rectors Giulio Maier - Milan Jean Salen9on - Palaiseau Wilhelm Schneider - Wien

The Secretary General Bemhard Schrefler - Padua

Executive Editor Carlo Tasso - Udine

The series presents lecture notes, monographs, edited works and proceedings in the field of Mechanics, Engineering, Computer Science and Applied Mathematics. Purpose of the series is to make known in the international scientific and technical community results obtained in some of the activities organized by CISM, the International Centre for Mechanical Sciences.

INTERNATIONAL CENTRE FOR MECHANICAL SCIENCES COURSES AND LECTURES - No. 474

MULTISCALE MODELLING OF DAMAGE AND FRACTURE PROCESSES IN COMPOSITE MATERIALS EDITED BY TOMASZ SADOWSKI LUBLIN UNIVERSITY OF TECHNOLOGY, POLAND

SpringerWien NewYork

The publication of this volume was co-sponsored and co-financed by the UNESCO Venice Office - Regional Bureau for Science in Europe (ROSTE) and its content corresponds to a CISM Advanced Course supported by the same UNESCO Regional Bureau.

This volume contains 204 illustrations

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. © 2005 by CISM, Udine Printed in Italy SPIN 11569626

In order to make this volume available as economically and as rapidly as possible the authors' typescripts have been reproduced in their original forms. This method unfortunately has its typographical limitations but it is hoped that they in no way distract the reader.

ISBN-10 3-211-29558-5 SpringerWienNewYork ISBN-13 978-3-211-29558-8 SpringerWienNewYork

PREFACE

Various types of composites are used in engineering practice. The most important are fibrous compositesy laminates and materials with a more complicated geometry of reinforcement in the form of short fibres and particles of various properties^ shapes and sizes. The aim of course was to understand the basic principles of damage growth and fracture processes in ceramic, polymer and metal matrix composites. Nowadays, it is widely recognized that important macroscopic properties like the macroscopic stiffness and strength, are governed by processes that occur at one to several scales below the level of observation. Understanding how these processes infiuence the reduction of stiffness and strength is essential for the analysis of existing and the design of improved composite materials. The study of how these various length scales can be linked together or taken into account simultaneously is particular attractive for composite materials, since they have a well-defined structure at the micro and meso-levels. Moreover, the microstructural and mesostructural levels are well-defined: the microstructural level can be associated with small particles or fibres, while the individual laminae can be indentified at the mesoscopic level. For this reas