p-Laplace Equation in the Heisenberg Group Regularity of Solutions

This works focuses on regularity theory for solutions to the p-Laplace equation in the Heisenberg group. In particular, it presents detailed proofs of smoothness for solutions to the non-degenerate equation and of Lipschitz regularity for solutions to the

  • PDF / 1,464,767 Bytes
  • 96 Pages / 439.37 x 666.142 pts Page_size
  • 2 Downloads / 238 Views

DOWNLOAD

REPORT


Diego Ricciotti

p-Laplace Equation in the Heisenberg Group Regularity of Solutions 123

SpringerBriefs in Mathematics Series editors Nicola Bellomo, Torino, Italy Michele Benzi, Atlanta, USA Palle E.T. Jorgensen, Iowa City, USA Tatsien Li, Shanghai, China Roderick Melnik, Waterloo, Canada Lothar Reichel, Kent, USA Otmar Scherzer, Vienna, Austria Benjamin Steinberg, New York, USA Yuri Tschinkel, New York, USA G. George Yin, Detroit, USA Ping Zhang, Kalamazoo, USA

SpringerBriefs in Mathematics showcases expositions in all areas of mathematics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians.

BCAM SpringerBriefs Editorial Board Enrique Zuazua BCAM—Basque Center for Applied Mathematics & Ikerbasque Bilbao, Basque Country, Spain Irene Fonseca Center for Nonlinear Analysis Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, USA Juan J. Manfredi Department of Mathematics University of Pittsburgh Pittsburgh, USA Emmanuel Trélat Laboratoire Jacques-Louis Lions Institut Universitaire de France Université Pierre et Marie Curie CNRS, UMR, Paris Xu Zhang School of Mathematics Sichuan University Chengdu, China BCAM SpringerBriefs aims to publish contributions in the following disciplines: Applied Mathematics, Finance, Statistics and Computer Science. BCAM has appointed an Editorial Board, who evaluate and review proposals. Typical topics include: a timely report of state-of-the-art analytical techniques, bridge between new research results published in journal articles and a contextual literature review, a snapshot of a hot or emerging topic, a presentation of core concepts that students must understand in order to make independent contributions. Please submit your proposal to the Editorial Board or to Francesca Bonadei, Executive Editor Mathematics, Statistics, and Engineering: [email protected]

More information about this series at http://www.springer.com/series/10030

Diego Ricciotti

p-Laplace Equation in the Heisenberg Group Regularity of Solutions

123

Diego Ricciotti Department of Mathematics University of Pittsburgh Pittsburgh, PA USA

ISSN 2191-8198 SpringerBriefs in Mathematics ISBN 978-3-319-23789-3 DOI 10.1007/978-3-319-23790-9

ISSN 2191-8201

(electronic)

ISBN 978-3-319-23790-9

(eBook)

Library of Congress Control Number: 2015958335 © The Author(s) 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general des