Plastic flow and fracture of metallic glass
- PDF / 4,813,067 Bytes
- 10 Pages / 612 x 792 pts (letter) Page_size
- 63 Downloads / 356 Views
		    c a n n i n g e l e c t r o n m i c r o s c o p e o p e r a t i n g at 25 kv in H. J. LE~MY and T. T. WANGare Members of the Technical Staff, Bell Telephone Laboratories, Inc., Murray Hill, N.J.H.S. CHEN, formerly Postdoctoral Associate, Yeshiva University,New York, N. Y., is now Staff Physicist, Allied Chemical Corp., Materials Research Center, Morristown, N. J. Manuscript submitted August 4, 1971. METALLURGICALTRANSACTIONS
 
 the s e c o n d a r y e l e c t r o n e m i s s i o n mode. The compos i t i o n s , s t r u c t u r e s , and g l a s s t r a n s i t i o n and c r y s t a l l i z a t i o n t e m p e r a t u r e s 2 of the a l l o y s e x a m i n e d in this i n v e s t i g a t i o n a r e s u m m a r i z e d in T a b l e I. The gold and copper alloying additions shown in Table I were s e l e c t e d b e c a u s e they i n c r e a s e the stability and g l a s s t r a n s i t i o n t e m p e r a t u r e of the b i n a r y alloy, p r e s u m a b l y by i n c r e a s i n g the c o n f i g u r a t i o n a l e n t r o p y and hence the s t a b i l i t y of the liquid phase. 2 T h i s effect is e v i denced by an i n c r e a s e in the c r y s t a l l i z a t i o n t e m p e r a t u r e , T c , as shown in T a b l e I. The a m o r p h o u s - c r y s t a l l i n e t r a n s f o r m a t i o n in t h e s e alloys has been studied p r e v i o u s l y . F o r the b i n a r y a l loy, 2 c r y s t a l l i z a t i o n o c c u r s in t h r e e stages: a) h o m o geneous p r e c i p i t a t i o n of a v e r y f i n e - g r a i n e d , " m i c r o c r y s t a l l i n e " (20 to 100A) m e t a s t a b l e fcc phase within
 
 Table I. Pd-Si Specimen Compositions, Heat Treatments, Structures, and Transformation Temperatures
 
 No.
 
 Composition, AtomicFractions HeatTreatment
 
 Structure
 
 Tg*
 
 Tc*
 
 362~
 
 367~
 
 372~
 
 402~
 
 373~
 
 413~
 
 1
 
 Pdo.a2Sio.la
 
 as quenched amorphous
 
 2
 
 Pd0.a2Sio.]s
 
 350~ hr furnacecool
 
 glass microcrystalline fcc + metastable
 
 3
 
 Pdo.s2Slo.ls
 
 450~ hr furnacecool
 
 fcc + metastable silicide
 
 as quenched amorphous
 
 sdicide
 
 4
 
 Pdo.79sAuo.o4Sio.16 s
 
 5
 
 Pdo.795Auo.o4Sio.16s 350~
 
 6
 
 Pdo.79sAuo.o4Sio.t6s
 
 450~ hr. furnacecool
 
 microcrystalline fcc + metastable sihclde
 
 7
 
 Pdo.7qs CUo.o6S10.16s
 
 as quenched
 
 amorphous
 
 8
 
 Pdo.77sCuo.o6 Sio.16s
 
 350~
 
 glass+ microcrystalhne fcc
 
 hr.
 
 hr
 
 furnace cool
 
 9
 
 Pdo.7~sCuo.o6 Sio.]6s
 
 450~ hr furnacecool
 
 glass+ fcc mlcrocrystals
 
 glass+ microcrystallinefcc + metastablesilicide
 
 *Tg and Tc valuesfromRef. 2. Heatingrate = 20~ per rain.
 
 VOLUME 3, MARCH 1972-699
 
 |
 
 o_o_ X
 
 s
 
 3
 
 ca
 
 L o. o2 , ~ u L ,
 
 Z
 
 gz
 
 0)/~
 
 O3 t~ f15
 
 m ~ _1
 
 N Z
 
 +5*
 
 o AL/L
 
 Fig. 1--Load-elongation c u r v e s for the tensile s p e c i m e n s listed in Table I.
 
 Table II. Mechanical Properties of PdSi Alloys
 
 Num- DPH, ber kg/mm2 1 2 3
 
 118 116 232
 
 4 5 6
 
 127 91 161
 
 7 8 9
 
 129 113 141
 
 E, dyne/cm2
 
 YS, dyne/era 2
 
 UTS, dyne/cm2
 
 TS
 
 6.8 X 10n 8.25 X 1 0 9 2.7 • 101~ 0.0025 7.5X 10n 1.35Xl0 l~ 2.75X 10l~ 0.004 Specimensextremely 0 brittle no tensde data 8.5 X lOl* 9.5 X 109 2.7 X 10l~ 0.003 10X 10n		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	