Quasi-periodic Flows in Time-Delay Systems
In this chapter, from Luo (2014 ), period-m flows to quasi-periodic flows in time-delayed nonlinear dynamical systems will be presented. The analytical solutions of quasi-periodic flows in autonomous time-delayed systems will be discussed, and the analyti
- PDF / 364,569 Bytes
- 41 Pages / 439.37 x 666.142 pts Page_size
- 72 Downloads / 208 Views
		    Quasi-periodic Flows in Time-Delay Systems
 
 In this chapter, from Luo (2014), period-m flows to quasi-periodic flows in time-delayed nonlinear dynamical systems will be presented. The analytical solutions of quasi-periodic flows in autonomous time-delayed systems will be discussed, and the analytical solutions of quasi-periodic flows in periodically forced, time-delayed nonlinear dynamical systems will be presented. The analytical solutions of quasi-periodic solutions in free and periodically forced, time-delayed vibration systems will be presented.
 
 4.1
 
 Time-Delay Nonlinear Systems
 
 Consider quasi-periodic flows in autonomous, time-delayed nonlinear systems, and the analytical solution of quasi-periodic flows relative to period-m flow is given as follows. Theorem 4.1 Consider a nonlinear, time-delayed, dynamical system as x_ ¼ Fðx; xs ; pÞ 2 Rn
 
 ð4:1Þ
 
 where Fðx; xs ; pÞ is a C r -continuous nonlinear vector function (r  1). (A) If such a time-delayed dynamical system has a period-m flow xðmÞ ðtÞ with finite norm jjxðmÞ jj and period T ¼ 2p=X, there is a generalized coordinate transformation for the period-m flow of Eq. (4.1) in the form of ðmÞ
 
 xðmÞ ðtÞ ¼ a0 ðtÞ þ sðmÞ
 
 xsðmÞ ðtÞ ¼ a0
 
 ðtÞ þ
 
 1 X
 
 k k bk=m ðtÞ cosð hÞ þ ck=m ðtÞ sinð hÞ; m m k¼1 1 X
 
 k k bsk=m ðtÞ cos½ ðh  hs Þ þ csk=m ðtÞ sin½ ðh  hs Þ m m k¼1
 
 © Springer International Publishing Switzerland 2017 A.C.J. Luo, Periodic Flows to Chaos in Time-delay Systems, Nonlinear Systems and Complexity 16, DOI 10.1007/978-3-319-42664-8_4
 
 ð4:2Þ
 
 115
 
 116
 
 4 Quasi-periodic Flows in Time-Delay Systems sðmÞ
 
 with a0
 
 ðmÞ
 
 sðmÞ
 
 ðmÞ
 
 ¼ a0 ðt  sÞ; bk ð0Þ
 
 ðmÞ
 
 sðmÞ
 
 ¼ bk ðt  sÞ; ck ðmÞ
 
 ðmÞ
 
 ðmÞ
 
 ¼ ck ðt  sÞ; hs ¼ Xs and
 
 ðmÞ
 
 ¼ ða01 ; a02 ;    ; a0n ÞT ;
 
 a1  a0 ðkÞ
 
 a2  bk=m ¼ ðbk=m1 ; bk=m2 ;    ; bk=mn ÞT ; ðkÞ
 
 a3  ck=m ¼ ðck=m1 ; ck=m2 ;    ; ck=mn ÞT sð0Þ
 
  a0
 
 sðmÞ
 
 sðkÞ
 
  bsk=m ¼ ðbsk=m1 ; bsk=m2 ;    ; bsk=mn ÞT ;
 
 sðkÞ
 
  csk=m ¼ ðcsk=m1 ; csk=m2 ;    ; csk=mn ÞT
 
 a1 a2 a3
 
 sðmÞ
 
 sðmÞ
 
 sðmÞ
 
 ¼ ða01 ; a02 ;    ; a0n ÞT ;
 
 ð4:3Þ
 
 which, under jjxðmÞ ðtÞ  xðmÞ ðtÞjj\e and jjxsðmÞ ðtÞ  xsðmÞ ðtÞjj\es with prescribed small e [ 0 and es [ 0, can be approximated by a finite term transformation xðmÞ ðtÞ as ðmÞ
 
 xðmÞ ðtÞ ¼ a0 ðtÞ þ sðmÞ
 
 xsðmÞ ðtÞ ¼ a0
 
 ðtÞ þ
 
 N0 X
 
 k k bk=m ðtÞ cosð hÞ þ ck=m ðtÞ sinð hÞ; m m k¼1 N0 X
 
 ð4:4Þ
 
 k k bsk=m ðtÞ cos½ ðh  hs Þ þ csk=m ðtÞ sin½ ðh  hs Þ m m k¼1
 
 and the generalized coordinates are determined by a_ ¼ f s0 ða; as ; pÞ
 
 ð4:5Þ
 
 where k0 ¼ diagðInn ; 2Inn ;    ; NInn Þ; ð0Þ
 
 ðmÞ
 
 ðkÞ
 
 ðkÞ
 
 a1  a0 ; a2  bk=m ; a3  ck=m ; sð0Þ
 
 a1
 
 sðmÞ
 
  a0
 
 sðkÞ
 
 ; a2
 
 ðkÞ
 
  bsk=m ; a3  csk=m
 
 ð0Þ
 
 a1 ¼ a1 ; ð1Þ
 
 ð2Þ
 
 ðNÞ
 
 ð1Þ
 
 ð2Þ
 
 ðNÞ
 
 a2 ¼ ða2 ; a2 ;    ; a2 ÞT  bðmÞ ; a3 ¼ ða3 ; a3 ;    ; a3 ÞT  cðmÞ ; sð0Þ
 
 as1 ¼ a1 ; sð1Þ
 
 sð2Þ
 
 sðNÞ T
 
 sð1Þ
 
 sð2Þ
 
 sðNÞ T
 
 ðmÞ
 
 ðmÞ
 
 as2 ¼ ða2 ; a2 ;    ; a2 as3 ¼ ða3 ; a3 ;    ; a3
 
 Þ  bsðmÞ ; Þ  csðmÞ ;
 
 ðmÞ
 
 F1 ¼ F0
 
 ðmÞ
 
 F2 ¼ ðF11 ; F12 ;    ; F1N ÞT ;
 
 4.1 Time-Delay Nonlinear Systems
 
 117 ðmÞ
 
 ðmÞ
 
 ðmÞ
 
 F3 ¼ ðF21 ; F22 ;  		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	