Relations for the Horn Functions

  • PDF / 126,916 Bytes
  • 7 Pages / 594 x 792 pts Page_size
  • 38 Downloads / 210 Views

DOWNLOAD

REPORT


Journal of Mathematical Sciences, Vol. 250, No. 1, October, 2020

RELATIONS FOR THE HORN FUNCTIONS R. M. Mavlyaviev Kazan Federal University 18, Kremlevskaya St., Kazan 420008, Russia [email protected]

I. B. Garipov ∗ Kazan Federal University 18, Kremlevskaya St., Kazan 420008, Russia ilnur [email protected]

UDC 517.58

We prove Gauss type relations for the Horn functions H3 . Bibliography: 7 titles.

1

Introduction

Special functions that are solutions to ordinary differential equations or systems of such equations are widely used to solve problems in mathematical physics. For example, the Gaussian hypergeometric function ∞  (α)n (β)n z n F (α, β; δ; z) = (δ)n n! n=0

is a solution to the equation z(1 − z)uzz + (δ − (α + β + 1)z)uz − αβω = 0 and plays an important role in the theory of differential equations with the Bessel operator [1] uxx + uyy + uzz +

2α uz = 0. z

There are many relations connecting the function F (·) with different parameters. For example, the well-known 15 Gauss relations for contiguous hypergeometric functions (δ − 2α − (β − α)z)F (α, β; δ; z) + α(1 − z)F (α + 1, β; δ; z) − (δ − α)F (α − 1, β; δ; z) = 0,



(β − α)F (α, β; δ; z) + αF (α + 1, β; δ; z) − βF (α, β + 1; δ; z) = 0,

(1.2)

(δ − α − β)F (α, β; δ; z) + α(1 − z)F (α + 1, β; δ; z) − (δ − β)F (α, β − 1; δ; z) = 0,

(1.3)

To whom the correspondence should be addressed.

Translated from Problemy Matematicheskogo Analiza 104, 2020, pp. 57-62. c 2020 Springer Science+Business Media, LLC 1072-3374/20/2501-0062 

62

(1.1)

δ(α − (δ − β)z)F (α, β; δ; z) − αδ(1 − z)F (α + 1, β; δ; z) + (δ − α)(δ − β)zF (α, β; δ + 1; z) = 0,

(1.4)

(δ − α − 1)F (α, β; δ; z) + αF (α + 1, β; δ; z) − (δ − 1)F (α, β; δ − 1; z) = 0,

(1.5)

(δ − α − β)F (α, β; δ; z) − (δ − α)F (α − 1, β; δ; z) + β(1 − z)F (α, β + 1; δ; z) = 0,

(1.6)

(β − α)(1 − z)F (α, β; δ; z) − (δ − α)F (α − 1, β; δ; z) + (δ − β)F (α, β − 1; δ; z) = 0,

(1.7)

δ(1 − z)F (α, β; δ; z) − δF (α − 1, β; δ; z) + (δ − β)zF (α, β; δ + 1; z) = 0,

(1.8)

(α − 1 − (δ − β − 1)z)F (α, β; δ; z) + (δ − α)F (α − 1, β; δ; z) − (δ − 1)(1 − z)F (α, β; δ − 1; z) = 0,

(1.9)

(δ − 2β − (α − β)z)F (α, β; δ; z) + β(1 − z)F (α, β + 1; δ; z) − (δ − β)F (α, β − 1; δ; z) = 0,

(1.10)

δ(β − (δ − α)z)F (α, β; δ; z) − βδ(1 − z)F (α, β + 1; δ; z) + (δ − α)(δ − β)zF (α, β; δ + 1; z) = 0,

(1.11)

(δ − β − 1)F (α, β; δ; z) + βF (α, β + 1; δ; z) − (δ − 1)F (α, β; δ − 1; z) = 0,

(1.12)

δ(1 − z)F (α, β; δ; z) − δF (α, β − 1; δ; z) + (δ − α)zF (α, β; δ + 1; z) = 0,

(1.13)

(β − 1 − (δ − α − 1)z)F (α, β; δ; z) + (δ − β)F (α, β − 1; δ; z) − (δ − 1)(1 − z)F (α, β; δ − 1; z) = 0,

(1.14)

δ(δ − 1 − (2δ − α − β − 1)z)F (α, β; δ; z) + (δ − α)(δ − β)zF (α, β; δ + 1; z) − δ(δ − 1)(1 − z)F (α, β; δ − 1; z) = 0.

(1.15)

There are also relations connecting the hypergeometric function F (α, β; δ; z) with some F (α + l, β + m; δ + n; z), where l, m, n are arbitrary integers. For example, αβ zF (α + 1, β + 1; δ + 1; z), δ(1 − δ) α F (α, β + 1; δ; z) − F (α, β; δ; z) = zF (α + 1, β + 1; δ + 1; z). δ F (α, β; δ; z) − F (α, β; δ − 1; z)