Smart Hydrogel Modelling

The science of mathematical modelling and numerical simulation is generally accepted as the third mode of scienti?c discovery (with the other two modes being experiment and analysis), making this ?eld an integral component of c- ting edge scienti?c and in

  • PDF / 13,384,458 Bytes
  • 370 Pages / 439.37 x 666.142 pts Page_size
  • 114 Downloads / 197 Views

DOWNLOAD

REPORT


Hua Li

Smart Hydrogel Modelling

123

Prof. Hua Li Nanyang Technological University College of Engineering School of Mechanical & Aerospace Engineering 50 Nanyang Ave. Singapore 639798 Singapore

ISBN 978-3-642-02367-5 e-ISBN 978-3-642-02368-2 DOI 10.1007/978-3-642-02368-2 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009932261 © Springer-Verlag Berlin Heidelberg 2009 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated first and foremost to my motherland, and to Duer, Anne and my parents

Preface

The science of mathematical modelling and numerical simulation is generally accepted as the third mode of scientific discovery (with the other two modes being experiment and analysis), making this field an integral component of cutting edge scientific and industrial research in most domains. This is especially so in advanced biomaterials such as polymeric hydrogels responsive to biostimuli for a wide range of potential BioMEMS applications, where multiphysics and multiphase are common requirements. These environmental stimuli-responsive hydrogels are often known as smart hydrogels. In the published studies on the smart or stimuliresponsive hydrogels, the literature search clearly indicates that the vast majority are experimental based. In particular, although there are a few published books on the smart hydrogels, none is involved in the modelling of smart hydrogels. For the few published journal papers that conducted mathematical modelling and numerical simulation, results were far from satisfactory, and showed significant discrepancies when compared with existing experimental data. This has resulted in ad hoc studies of these hydrogel materials mainly conducted by trial and error. This is a very time-consuming and inefficient process, and certain aspects of fundamental knowledge are often missed or overlooked, resulting in off-tangent research directions. Thus it is absolutely necessary to publish a book on the modelling and simulation of the smart hydrogels with real multidisciplinary requirement for establishment of a theoretical platform by dev