Spatial models of an unconstrained rigid body
In this chapter the model of an unconstrained rigid body under spatial motion will be derived for three applications: Rigid body attached to the base by a translational spring-damper element. Spatial servo-pneumatic parallel robot. Model equations of a sp
- PDF / 39,200,582 Bytes
- 674 Pages / 439.37 x 666.142 pts Page_size
- 109 Downloads / 268 Views
		    Springer-V erlag Berlin Heidelberg GmbH
 
 ONLINE LIBRARY
 
 http://www.springer.de/engine/
 
 Hubert Hahn
 
 Rigid Body Dynamics of Mechanisms 2
 
 Applications
 
 With 228 Figures
 
 'Springer
 
 Professor Dr. Hubert Hahn Universität Gh Kassel Regelungstechnik und Systemdynamik, FB Maschinenbau Mönchebergstraße 7 D-34109 Kassel Germany
 
 e-mail: [email protected]
 
 Cataloging-in-Publication Data applied for Bibliographieinformation published by Die Deutsche Bibliothek Die Deutsche Bibliotheklists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in theInternetat ..+f(p,v) + qc(p,v),
 
 (2.3a)
 
 jJ
 
 (2.3b)
 
 =:Cf with
 
 g(p) = 0
 
 (2.3c)
 
 as the constraint position equation, which is written in an implicit form. Consider P;nct E ~np-nc as the vector ofthe minimal (independent) Cartesian coordinates of p with for planar mechanisms and for spatial mechanisms,
 
 (2.4a)
 
 and Pctep E ~nc as the vector of the dependent coordinates. Then V;nct can be written in the form
 
 Pind
 
 and
 
 (2.4b) (2.4c)
 
 Pind
 
 = Prind · P
 
 Pind
 
 =
 
 Vind
 
 = Prvind ·V= Prind
 
 Vind
 
 = Prind
 
 Pr ind
 
 ·
 
 P
 
 (2.4d) (2.4e)
 
 ·V
 
 (2.4f)
 
 ·V
 
 with the projection matrix p .
 
 av m_d E ap. ___ ,_ ~ ap -
 
 rmd . -
 
 av
 
 JH.np-nc,np
 
 (2.4g)
 
 or apind 1lßP1 Prind
 
 =
 
 (
 
 .
 
 , ... ,
 
 .
 
 8pinct
 
 1IPnp
 
 . .
 
 ' .' . apind np - nc I apl ' ... ' OPind np - nc I Pnp 0
 
 •
 
 0
 
 ) •
 
 2.2 Model equations in symbolic DE form
 
 13
 
 Here Prvind has been chosen as Prind in (2.4e) and (2.4f). Then, the vectors of the dependent coordinates and velocities are P dep = ( Pctep
 
 1l • • • l
 
 (2.4h)
 
 Pctep nc ) T E JR."c
 
 Pdep
 
 =
 
 P
 
 (2.4i)
 
 Pctep
 
 = Prdep · P
 
 (2.4j)
 
 vdep = vdep
 
 P,-dep ·
 
 (2.4k)
 
 Prdep. V
 
 = P,-ctep · v
 
 (2.41)
 
 with the projection matrix
 
 P rdep .._- 8pdep -_ 8vdep 8p 8v
 
 E
 
 mnc,np
 
 (2.4m)
 
 _!!.3!._
 
 = ( 8pind ) T
 
 (2.4n)
 
 __!!3!._
 
 = (
 
 m,.
 
 Then
 
 8p
 
 =
 
 __!!E_
 
 =
 
 pT d =
 
 8pind
 
 rm
 
 8p
 
 8vind
 
 and =
 
 pT rdep
 
 8pdep
 
 8v dep
 
 8pctep ) 8p
 
 T
 
 (2.4o)
 
 '
 
 and the following relations hold: P
 
 = 88p . Pind + __!!E_ . Pdep = 8 Pind
 
 Pctep
 
 pT
 
 rmd
 
 .
 
 Pind
 
 + pTrdep . Pctep
 
 (2.4p)
 
 Vinct
 
 :r + prdep. Vctep·
 
 (2.4q)
 
 and
 
 8v
 
 V=->)--. uvind
 
 V;nd
 
 + 8v
 
 ->)--.
 
 Vctep
 
 :r
 
 = prind.
 
 uvdcp
 
 The implicit constraint position equation (2.3c) will now be written in the explicit form (2.5a)
 
 w Pind
 
 w f--+
 
 P
 
 =
 
 h(pinJ
 
 with the nc components h; of h as the solutions Pctep j =Pi
 
 = h;(p,nJ
 
 (2.5b)
 
 of the nc independent, consistent and smooth constraint position equations (2.3c). The time derivative of (2.5a) is jJ = hPind (p,nJ. Pind with hPind (p,nJ :=
 
 8 ~;.inJ E md
 
 ]R_np,np-nc.
 
 (2.5c)
 
 2. Model equations in symbolic DAE and DE form
 
 14
 
 Due ta (2.4d), (2.3a), and (2.5a), Pind = Prind · P = Prind · T(p)
 
 (2.5d)
 
 ·V
 
 ar
 
 Pind = Prind · T(h(pind))
 
 (2.5e)
 
 ·V.
 
 Introducing the relatian (2.5f) which defines the matrix T,nct(P,nJ, yields, tagether with (2.5e): Tind(Pind) · Vind =Prim!· T(h(p,"J)
 
 ·V
 
 Assuming that T,nct(P,nd) is a regular matrix, this yields v,nd = T;;;;(P,nJ · Prind · T(h(p,"J) · v.
 
 (2.5g)
 
 Tagether with (2.4c), this yields thc rclat		
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	