The Improvement of Dental Composite Properties with Electromagnetically Aligned Nanofiber

  • PDF / 2,830,848 Bytes
  • 6 Pages / 612 x 792 pts (letter) Page_size
  • 28 Downloads / 200 Views

DOWNLOAD

REPORT


The Improvement of Dental Composite Properties with Electromagnetically Aligned Nanofiber Tansel Uyar1 and Dilek Cokeliler1,2 1 Department of Biomedical Engineering, Baskent University Baglica Campus, 06530, Ankara, Turkey 2 Department of Biological System Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA ABSTRACT Because of the aesthetics, handy and low cost features, acrylic resin is the main material in denture fabrication last 40 years. The purpose of this study is to improve mechanical properties of acrylic based dental composites used in dentistry by applying nanofiber approaches. Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling but sometime this material can be fractured or cracked in clinical use because of the strength issues that is frequently used in restorative dentistry in recent years. A wide variety of fillers that are used to produce PMMA composites draw the attention in literature. Using PMMA composite resins with electrospun polyvinylalcohol (PVA) nanofiber fillers is our first novelty. Also the producing and using aligned electrospun fibers as a filler is our second novelty of this practice. PVA was selected as composite filler because of biocompatibility and preparing easily also has non-toxic solvent. Electrospinning system is manufactured that allows manipulation of electric field used in the application of alignment in lab scale. Various auxillary electrode systems are used for different patterns of alignment with the manufactured device and electrode systems produce fibers in different range of diameter. Scanning electron microscopy (SEM) is used for physical characterization and determined the range of fiber diameters. After the optimization of concentration step non-woven and aligned fibers are also analyzed. Non-woven fiber has no unique pattern because of the nature of electrospinning but aligned fibers has crossed lines. These produced fibers structured as layerby-layer form with different features are used in producing PMMA dental composites with different volume ratios. In the last part of the research, PMMA dental composites are produced with aligned and formless fibers that are characterized with three-point bending test. The maximum flexural strength figure shows that fiber load by weight %0.25 and above improves the maximum. The change of flexural strength, elastic modulus values and toughness are obtained and compared with formless and aligned PVA nanofiber included composite specimens. As a result, mechanical properties of PMMA dental composites are improved with using PVA nanofibers as a filler also with the usage of aligned fibers instead of the formless ones the effects of improvement gets better with maximum values as 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), 170kJ/m3 (toughness). INTRODUCTION A main challenge for centuries has been the development and selection of biocompatible, long-lasting, direct-filling tooth restoratives materials that can withstand the adverse co