Unbounded Non-Commutative Integration
Non-commutative integration has its origin in the classical papers of Murray and von Neumann on rings of operators, and was introduced because of unsolved problems in unitary group representations and the elucidation of various aspects of quantum-mechanic
- PDF / 16,378,821 Bytes
- 209 Pages / 439.37 x 666.142 pts Page_size
- 34 Downloads / 219 Views
		    MATHEMA TICAL PHYSICS STUDIES A SUPPLEM ENT AR Y SER IES TO LETTERS IN MATHEMATICAL PHYSICS
 
 Editors: J. C. CORTET, UniversitedeDijon, France M. FLA TO, Universite de Dijon, France M. GUENIN, Institut de Physique Theorique, Geneva, Switzerland E. H. LIEB, Princeton University, US.A. R. RACZKA, Institute of Nuclear Research, Warsaw, Poland
 
 Editorial Board:
 
 w. AM REIN, Institut de Physique Theorique, Geneva, Switzerland H. ARAKI, Kyoto University, Japan A. CONNES, I.H.E.S., France L. FAD D E EV , Steklov Institute of Mathematics, Leningrad, U.S.S.R. J. FROHLICH, F.T.H., Switzerland C. FRONSDAL, UCLA, Los Angeles, U.S.A. I. M. GELFAND, Moscow State University, US.S.R. A. JAFFE, Harvard University, U.S.A. A. A. KIRILLOV, Moscow State University, U.S.S.R. A. LICHNEROWICZ, College de France, France B. NAGEL, K.T.H., Stockholm, Sweden J. NIEDERLE, Institute of Physics CSAV, Prague, Czechoslovakia A. SALAM, International Center for Theoretical Physics, Trieste, Italy W. SCHMID, Harvard University, U.S.A.
 
 I.E.SEGAL,M.I.T., US.A. J. SIM 0 N, Universitye de Dijon, France D. STERNHEIMER, Col/ege de France, France I. T. TODOROV, Institute of Nuclear Research, Sofia, Bulgaria
 
 VOLUME 7
 
 Unbounded Non-Commutative Integration by
 
 J. P. Jurzak Physique-Mathematique, Universiu! de Dijon, France
 
 D. Reidel Publishing Company A MEMBER OF THE KLUWER ACADEMIC PUBLISHERS GROUP
 
 Dordrecht / Boston / Lancaster
 
 Library of Congrets Ca taloging in Publication Data JUlZak., J . P. (Jean· Paul ). 1950-
 
 Unbou nded non·commutative inlcg/ation. (Mathematical physics studies: v. 7) Bibliography: p. Includes index. \. Integration. Functional. 2. Von Neumann algebras. 3. Noncommutative algebras.. Ope rator theory. 5. Mathematical physics. I. Title. II. Series. QC20. 7. r85J 87 1985 530.)'5 15 7 85-10759 15BN· 13: 978·94·010·88t3· 8 e·ISBN· 13: 978·94·009·5231 · 7 001: 10.10071978-94·009· 5231 ·7
 
 ,.
 
 Published by D. Reidel Pu blishing Company P.O. Box 17, 3300 AA Dordrecht, Holland Sold and distributed in the U.S.A . and Cl nada by Kluwer Academic Publ ishers, 190 Old Derby Street, Hingham, MA 02043. U.S.A. In all other countries. sold and d istributed by K.1uw er Academic Pu blishers Gro up , P.O. Box 322. 3300 AH DOldrecht, Holland
 
 All Righ ts Reserved Cl 1985 by D. Reidel Publishing Comp any, Dordrccht, Holland Softcover reprint of the hardcover 1st editio n 1985 No pall of the material protected by this copyright notice may be Icproduoed or utilized in any fOlm o r by any means, electronic or mechanical, including photocopying, rccording o r by any information storage and retrieval system, without written pelmission from the copy right owner
 
 A DOMINIQUE
 
 TABLE OF CONTENTS
 
 PREFACE
 
 ix
 
 INTRODUCTION
 
 xi
 
 VOCABULARY
 
 xvii
 
 EXAMPLES AND OBSERVATIONS CHAPTER 1: MAIN SPACES
 
 7
 
 CHAPTER 2: DENSITY THEOREMS
 
 21
 
 CHAPTER 3: TECHNICAL PROPERTIES OF THE DOMAIN
 
 30
 
 CHAPTER 4: ELEMENTARY OPERATIONS
 
 57
 
 CHAPTER 5: GELFAND TRANSFORMATION
 
 65
 
 CHAPTER 6: COFINAL CENTRAL SYSTEMS AND DERIVATIONS
 
 83
 
 CHAPTER 7: NOTION OF REPRESENTATION: THE G.N.S. C		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	