Variational Crimes
The solution of elliptic boundary value problems is usually transformed to the minimization of a convex coercive functional or solving a variational problem. This is their variational formulation.
- PDF / 5,643,634 Bytes
- 197 Pages / 453.543 x 683.15 pts Page_size
- 115 Downloads / 198 Views
Jan Brandts Sergey Korotov Michal Křížek
Simplicial Partitions with Applications to the Finite Element Method
Springer Monographs in Mathematics Editors-in-Chief Isabelle Gallagher, Département de Mathématiques et Applications, Ecole Normale Supérieure, Paris, France Minhyong Kim, School of Mathematics, Korea Institute for Advanced Study, Seoul, South Korea; Mathematical Institute, University of Warwick, Coventry, UK Series Editors Sheldon Axler, Department of Mathematics, San Francisco State University, San Francisco, CA, USA Mark Braverman, Department of Mathematics, Princeton University, Princeton, NJ, USA Maria Chudnovsky, Department of Mathematics, Princeton University, Princeton, NJ, USA Tadahisa Funaki, Department of Mathematics, University of Tokyo, Tokyo, Japan Sinan Güntürk, Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA Claude Le Bris, CERMICS, Ecole des Ponts ParisTech, Marne la Vallée, France Pascal Massart, Département de Mathématiques, Université de Paris-Sud, Orsay, France Alberto A. Pinto, Department of Mathematics, University of Porto, Porto, Portugal Gabriella Pinzari, Department of Mathematics, University of Padova, Padova, Italy Ken Ribet, Department of Mathematics, University of California, Berkeley, CA, USA René Schilling, Institut für Mathematische Stochastik, Technische Universität Dresden, Dresden, Germany Panagiotis Souganidis, Department of Mathematics, University of Chicago, Chicago, IL, USA Endre Süli, Mathematical Institute, University of Oxford, Oxford, UK Shmuel Weinberger, Department of Mathematics, University of Chicago, Chicago, IL, USA Boris Zilber, Mathematical Institute, University of Oxford, Oxford, UK
This series publishes advanced monographs giving well-written presentations of the “state-of-the-art” in fields of mathematical research that have acquired the maturity needed for such a treatment. They are sufficiently self-contained to be accessible to more than just the intimate specialists of the subject, and sufficiently comprehensive to remain valuable references for many years. Besides the current state of knowledge in its field, an SMM volume should ideally describe its relevance to and interaction with neighbouring fields of mathematics, and give pointers to future directions of research.
More information about this series at http://www.springer.com/series/3733
Jan Brandts Sergey Korotov Michal Křížek •
•
Simplicial Partitions with Applications to the Finite Element Method
123
Jan Brandts Korteweg-de Vries Institute for Mathematics University of Amsterdam Amsterdam, The Netherlands Michal Křížek Institute of Mathematics Czech Academy of Sciences Prague, Czech Republic
Sergey Korotov Department of Computer Science, Electrical Engineering and Mathematical Sciences Western Norway University of Applied Sciences Bergen, Norway
ISSN 1439-7382 ISSN 2196-9922 (electronic) Springer Monographs in Mathematics ISBN 978-3-030-55676-1 ISBN 978-3-030-55677-8 (eBook) https://doi.org/10.1007/978-3-030-55677-8 Math
Data Loading...