Queueing Theory A Linear Algebraic Approach

Queueing Theory deals with systems where there is contention for resources, but the demands are only known probabilistically. This book can be considered as either a monograph or a textbook on the subject, and thus is aimed at two audiences. It can be use

  • PDF / 702,963 Bytes
  • 19 Pages / 441 x 666 pts Page_size
  • 22 Downloads / 279 Views

DOWNLOAD

REPORT


Lester Lipsky

Queueing Theory A Linear Algebraic Approach Second Edition

123

Lester Lipsky Professor Emeritus Department of Computer Science and Engineering University of Connecticut Storrs, CT 06268-2155 [email protected]

ISBN: 978-0-387-49704-4 DOI 10.1007/978-0-387-49706-8

e-ISBN: 978-0-387-49706-8

Library of Congress Control Number: 2008937578 Mathematics Subject Classification (2000): 60XX, 68XX, 90XX, 60K25, 60J27, 90B22, 60K05 The first edition of this book was first published by: Macmillan (now Pearson Publications, Inc.) c Springer Science+Business Media, LLC 2009  All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper springer.com

Dedication

To my wife, Sue, with whom each day is fresh and new, a truly Markovian relationship.

A Path to Discovery Theories of the known which are described by different ideas, may be equivalent in all their predictions and are hence scientifically indistinguishable. However, they are not psychologically identical when trying to move from that base into the unknown. For different views suggest different kinds of modifications which might be made. Therefore, a good scientist today might find it useful to have a wide range of viewpoints and mathematical expressions of the same theory available to him. This may be asking too much of one person. The new students should as a class have this. If every individual student follows the same current fashion in expressing and thinking about the generally understood areas, then the variety of hypotheses being generated to understand the still open problems is limited. Perhaps rightly so, . . . BUT if the truth is in another direction, who will find it? Richard P. Feynman So spoke an honest man, the outstanding intuitionist of our age and a prime example of what may lie in store for anyone who dares to follow the beat of a different drum. Julian Schwinger From a special issue on Richard Feynman (who died on 15 February 1988) in Physics Today, February 1989. Feynman’s quote (slightly paraphrased here) was taken from his Nobel lecture in June 1965. [Note: Feynman and Schwinger shared the Nobel prize with S. Tomonaga in 1965 for their work on quantum electrodynamics in the late forties. Working independently, and using radically different methods, they ended up with mathematically equivalent theories. Schwinger and Tomonaga were the “mainstreame