Refractometric Photonic Chips for Biosensing

Light is the historical medium for analysis in biology. Micro/nanotechnologies renewed the optical components fabrication processes following the example of electronics integration. A full optical system, as an interferometer or a spectrometer, for instan

  • PDF / 441,155 Bytes
  • 26 Pages / 439.37 x 666.142 pts Page_size
  • 82 Downloads / 200 Views

DOWNLOAD

REPORT


Abstract Light is the historical medium for analysis in biology. Micro/nanotechnologies renewed the optical components fabrication processes following the example of electronics integration. A full optical system, as an interferometer or a spectrometer, for instance, can be integrated on a single chip and light can be confined at the nanometer scale allowing for interaction with a single biological entity (cell, enzyme, antigen, etc.). Thus, robust, portable, and sensitive systems can be developed by optical integration. Main ways to confine and propagate the electromagnetic wave will be introduced for the non-specialist: optical and plasmonic waveguides and photonic crystals will be discussed. Fabrication technologies for optical integration will be presented depending on the nature of the materials to be considered as semiconductors, glasses, metals, or polymer. Further is explained the sensing principle based on the detection of refractive index change. Finally, a review of the actual trends for the realization of biosensors is presented, discussed, and compared in terms of refractive index change resolution to come out with design strategies to enhance the sensors resolution for small volume detection and earlier diagnostic. Keywords Biosensors • Integrated optics • Optical sensors • Photonic crystal • Plasmon • Waveguide

Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Photonic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Optical Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Diffractive Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Plasmonic Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156 157 157 158 160

R.K. Kribich (*) IES, the Electronics Institute (UMR UM2/CNRS 5214), Universite´ Montpellier 2, Place E. Bataillon, CC84, 34095 Montpellier, France e-mail: [email protected] W. Fritzsche and J. Popp (eds.), Optical Nano- and Microsystems for Bioanalytics, Springer Series on Chemical Sensors and Biosensors (2012) 10: 155–180 DOI 10.1007/978-3-642-25498-7_5, # Springer-Verlag Berlin Heidelberg 2012

155

156

R.K. Kribich

3 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Materials and Optical Waveguides’ Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Periodical Patterning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .