Research in Energy Harvesting Wireless Sensor Networks and the Challenges Ahead

Wireless sensor networks (WSNs) are set to form a significant part of the new pervasive Internet, often referred to as the Internet of Things. WSNs have traditionally been powered by limited energy sources, viz. batteries, limiting their operational lifet

  • PDF / 682,338 Bytes
  • 21 Pages / 439.37 x 666.142 pts Page_size
  • 21 Downloads / 169 Views

DOWNLOAD

REPORT


Abstract Wireless sensor networks (WSNs) are set to form a significant part of the new pervasive Internet, often referred to as the Internet of Things. WSNs have traditionally been powered by limited energy sources, viz. batteries, limiting their operational lifetime. To ensure the sustainability of WSNs, researchers have turned to alternative energy sources for power. Harvesting ambient energy from the environment to power WSNs is a promising approach, but it is currently unable to provide a sustained energy supply to support continuous operation. Sensor nodes therefore need to exploit the sporadic availability of energy to quickly sense and transmit the data. We first review the recent developments in energy harvesting technology and research on networking protocol design for WSNs powered by ambient energy harvesting. Then, we discuss some of the challenges faced by researchers in designing networking protocols and summarize the open research problems. Keywords Energy harvesting/scavenging, Protocol design, Wireless sensor network

W.K.G. Seah (*) School of Engineering and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand e-mail: [email protected] Y.K. Tan Energy Research Institute @ Nanyang Technological University (ERI@N), Research Techno Plaza, X-Frontier, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore e-mail: [email protected] A.T.S. Chan The Hong Kong Polytechnic University, Hung Hom, Hong Kong e-mail: [email protected] D. Filippini (ed.), Autonomous Sensor Networks: Collective Sensing Strategies for Analytical Purposes, Springer Series on Chemical Sensors and Biosensors (2013) 13: 73–94 DOI 10.1007/5346_2012_27, # Springer-Verlag Berlin Heidelberg 2012, Published online: 23 August 2012

73

74

W.K.G. Seah et al.

Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview of WSN-HEAP Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Energy Harvesting Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Overview of Renewable Energy Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Modelling of Energy Harvesting Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Design Principle of WSN with Energy Harvesting Technology . . . . . . . . . . . . . . . . . . . . . 4 Networking Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Power and Topology Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Data Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .