Robust Control for a Class of Time-Delay System via Razumikhin Lemma

The robust control problem is investigated for nonlinear time-delay systems with the form of triangular structure. The uncertain delay disturbances are bounded by nonlinear functions with unknown coefficients. Via the backstepping method, the state feedba

  • PDF / 6,850,219 Bytes
  • 301 Pages / 453.543 x 683.15 pts Page_size
  • 41 Downloads / 192 Views

DOWNLOAD

REPORT


ust Control for Nonlinear Time-Delay Systems

Robust Control for Nonlinear Time-Delay Systems

Changchun Hua Liuliu Zhang Xinping Guan •

Robust Control for Nonlinear Time-Delay Systems

123

Xinping Guan Department of Automation Shanghai Jiao Tong University Shanghai China

Changchun Hua Institute of Electrical Engineering Yanshan University Qinhuangdao China Liuliu Zhang Institute of Electrical Engineering Yanshan University Qinhuangdao China

ISBN 978-981-10-5130-2 DOI 10.1007/978-981-10-5131-9

ISBN 978-981-10-5131-9

(eBook)

Library of Congress Control Number: 2017943106 © Springer Nature Singapore Pte Ltd. 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Time delay appears in many physical processes due to the period of time it takes for the signals to transmit. Time-delay systems are largely encountered in modeling propagation phenomena, population dynamics, interconnected systems, supply chains, and systems controlled over communication networks. It is well known that time delay in control systems may lead to deterioration of the closed-loop performance or even destabilize the systems; therefore, specific analysis techniques and design methods are needed to be developed for control systems in the presence of time delay. The time-delay systems can be divided into linear time-delay systems and nonlinear time-delay systems. Recently, the stability analysis and control design of linear time-delay systems have been extensively studied with the popular tools—Lyapunov–Krasovskii functional method and Lyapunov–Razumikhin method. The stability and stabilization conditions can be transformed into solvable line