Semiorders Properties, Representations, Applications

Semiorder is probably one of the most frequently ordered structures in science. It naturally appears in fields like psychometrics, economics, decision sciences, linguistics and archaeology. It explicitly takes into account the inevitable imprecisions of s

  • PDF / 1,406,354 Bytes
  • 15 Pages / 439 x 666 pts Page_size
  • 107 Downloads / 255 Views

DOWNLOAD

REPORT


[1] Abbas, M. (1994). Contribution au rapprochement de la theorie des graph es et de l'aide a la deecisian: graphes parfaits et modeles de pre/Crence, PhD thesis, Universite Libre de Bruxelles, Belgium. [2] Abbas, M., Pirlot, M. and Vincke, Ph. (1996). Preference structures and cocomparability graphs, Journal 0/ Multicriteria Decision Analysis 5: 81-98. [3] Abbas, M. and Vincke, Ph. (1993). Preference structures and threshold models, Journal 0/ Multicriteria Decision Analysis 2: 171-178. [4] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B. (1993). Network fiows. Theory, Algorithms and Applications, Prentice-Hall. [5] Armstrong, W.E. (1939). The determinateness of the utility function, Economics Journal 49: 453-467. [6] Arrow, K. (1963). Social choice and individual values, 2nd edn, Wiley. [7] Bana e Costa, C. and Vansnick, J.-C. (1994). Macbeth - an interactive path towards the construction of cardinal value functions, International Transactions in Operational Research 1(4): 489-500. [8] Bell, D.E., Raiffa, H. and Tversky, A. (1988). Decision making: descriptive, normative and prescriptive interactions, Cambridge University Press. [9] Benzer, S. (1962). The fine structure of the gene, Scientijic American 206(1): 70-84. [10] Bertrand, P. (1992). Proprietes et caracterisations topologiques d'une representation pyramidale, Mathematiques et Sciences Humaines 117: 528. [11] Black, D. (1958). The theory sity Press.

0/ committees

and elections, Cambridge Univer-

[12] Bogart, K., Rabinovitch, I. and Trotter Jr., W. (1976). Abound on the dimension of interval orders, Journal 0/ Combinatorial Theory (A) 21: 319-328. [13] Bouyssou, D. (1986). Some remarks on the not ion of compensation in MCDM, European Journal 0/ Operational Research 26: 150-160. [14] Bouyssou, D. (1992). Ranking methods based on valued preference relations: a characterization of the net ftow method, European Journal 0/ Operational Research 60: 61-67. [15] Bouyssou, D. (1996). Outranking relations: do they have special properties, Journal 0/ Multicriteria Decision Analysis 5: 99-111. 175

176

BIBLIOGRAPHY

[16] Bouyssou, D. and Pirlot, M. (1997). A general framework for the aggregation of semiorders, Technical report, ESSEC, Cergy-Pontoise. [17] Bouyssou, D. and Vansnick, J.-C. (1986). Noncompensatory and generalized noncompensatory preference structures, Theory and Decision 21: 251-266. [18] Bradley, S.P., Hax, A.C. and Magnanti, T.L. (1977). Applied Mathematical Programming, Addison-Welsey. [19] Brans, J. P. and Vincke, Ph. (1985). A preference ranking organization method, Management Science 31(6): 647-656. [20] Carrano, A.V. (1988). Establishing the order of human chromosome-specific dna fragments, in A. Woodhead and B. Barnhart (eds), Biotechnology and the Human Genome, Plenum Press, 37-50. [21] Chandon, J., Lemaire, J. and Pouget, J. (1978). Denombrement des quasiordres sur un ensemble fini, Mathematiques et Seien ces Humaines 62: 6180. [22] Coombs, C.H. and Smith, J.E.K. (1973). On the detection of structures in attitudes and developmental processes, P