SiC, TiC and ZrC Nanostructured Ceramics: Elaboration and Potentialities for Nuclear Applications
- PDF / 3,447,374 Bytes
- 16 Pages / 538 x 718 pts Page_size
- 84 Downloads / 203 Views
		    1043-T02-02
 
 SiC, TiC and ZrC Nanostructured Ceramics: Elaboration and Potentialities for Nuclear Applications Y. Leconte, A. Audren, N.Research Herlin-Boime, C. Reynaud © 2008 Materials Society DSM/DRECAM/SPAM/LFP - CEA Saclay, France
 
 S. Le Gallet
 
 Institut Carnot de Bourgogne, Dijon, France
 
 A. Swiderska-Sroda, S. Gierlotka
 
 IHPP, Warsaw, Poland
 
 M. Leparoux
 
 EMPA, Thun, Switzerland
 
 X. Portier, M. Levalois
 
 SIFCOM, Caen, France
 
 I. Monnet
 
 CEA-DSM/DRECAM/CIRIL, Caen, France
 
 L. Thomé
 
 CSNSM, Orsay, France MRS Fall Meeting – Boston – 2007, December 26-30
 
 Outline Refractory carbides : high temp. applications Nanostructure :
 
 Good candidates for IV generation nuclear applications ?
 
 9 enhanced mechanical properties 9 under irradiation ..?
 
 high grain boundaries density (traps for defects)
 
 1
 
 Nanopowders (SiC, TiC, ZrC) synthesis
 
 © 2008 Materials SinteResearch Society ring Densi fy & keep nanos cale
 
 3
 
 Better resistance to irradiation ?
 
 Nanostructured ceramics elaboration
 
 2
 
 Irradiation experiments
 
 MRS Fall Meeting – Boston – 2007, December 26-30
 
 1 Laser Pyrolysis Collection " Flame "
 
 Nanopowders synthesis No contamination by # reactor walls
 
 Powders Ar chimney
 
 Controlled grain # growth
 
 # Nanomaterials : CO 2008 Materials Research © Society laser 2
 
 Si-based : SiC, Si/C/N, Si/C/N/Al/Y, Si3N4, Si/B/C…
 
 Non oxide : C black, C3N4, B, BN, B4C, TiB2, ZrB2, TiC, ZrC, WC, Fe@C … Oxide : SiO2 and silicates, TiO2, ZrO2, Al2O3, La2O3, Y2O3, Fe@SiO2…
 
 Nozzle
 
 Gaseous or liquid Interesting for industrial # purposes precursors MRS Fall Meeting – Boston – 2007, December 26-30
 
 1
 
 Nanopowders synthesis
 
 SiC nanopowders synthesis from gaseous precursors (SiH4 + C2H2 (+ He))
 
 50 nm
 
 • β phase crystallization • Density ~ 3.2 • Si/C (powder) = Si/C (precursor)
 
 • chemical yield ~ 100 %Society © 2008 Materials Research • Production = 100 g.h-1 (lab.)
 
 50 nm Diffracted intensity (a.u.)
 
 700
 
 SXRD = 43.0 nm
 
 600
 
 500
 
 400
 
 SXRD = 7.2 nm
 
 300
 
 200 15
 
 20
 
 25
 
 30
 
 35
 
 40
 
 45
 
 50
 
 55
 
 60
 
 65
 
 70
 
 75
 
 80
 
 Narrow size distribution and controlled grain size = Enables the size effects study (densification, irradiation) 85
 
 2 θ (°)
 
 MRS Fall Meeting – Boston – 2007, December 26-30
 
 1
 
 Nanopowders synthesis
 
 ZrC nanopowders two-steps synthesis from liquid precursors ZrO2 nanoparticles coated by free C 5 nm 0
 
 30
 
 Carburization 1h under Ar
 
 4 Diam
 
 © 2008 Materials Research Society Argon
 
 Argon
 
 C2H4
 
 Ar
 
 Zr(OC4H9)4
 
 10 nm
 
 Same approach for TiC nanoparticles more details on TiC in:
 
 Leconte et al. J. Phys. Chem. B 2006 MRS Fall Meeting – Boston – 2007, December 26-30
 
 1 Inductively coupled plasma T = 8000 – 10000 K plasma = Ar + H2
 
 Nanopowders synthesis Solid, liquid, or gaseous precursor
 
 Vaporisation For this work,
 
 Plasma Quenching ring
 
 Nucleation, © 2008 Materials Research Society
 
 precursors
 
 were SiC and ZrC raw powders
 
 chemical reactions
 
 Nanoparticles
 
 Growth, coalescence
 
 Quenching MRS Fall Meeting – Boston – 2007, December 26-30
 
 1
 
 Nanopowders synthesis
 
 SiC nanopowders SiC Nanopowder
 
 3 phases
 
 α-SiC (6H) precursor		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	