Singular Limits in Thermodynamics of Viscous Fluids
Many interesting problems in mathematical fluid dynamics involve the behavior of solutions of nonlinear systems of partial differential equations as certain parameters vanish or become infinite. Frequently the limiting solution, provided the limit exists,
- PDF / 3,985,466 Bytes
- 411 Pages / 467.716 x 666.142 pts Page_size
- 62 Downloads / 179 Views
John G. Heywood Department of Mathematics University of British Columbia Vancouver BC Canada V6T 1Y4 e-mail: [email protected]
Rolf Rannacher ,QVWLWXWIU$QJHZDQGWH0DWKHPDWLN Universität Heidelberg ,P1HXHQKHLPHU)HOG +HLGHOEHUJ Germany e-mail: [email protected]
Advances in Mathematical Fluid Mechanics is a forum for the publication of high quality monographs, or collections RIZRUNVRQWKHPDWKHPDWLFDOWKHRU\RI¾XLGPHFKDQLFVZLWKVSHFLDOUHJDUGVWRWKH1DYLHU6WRNHVHTXDWLRQV,WV mathematical aims and scope are similar to those of the Journal of Mathematical Fluid Mechanics.,QSDUWLFXODU mathematical aspects of computational methods and of applications to science and engineering are welcome as an important part of the theory. So also are works in related areas of mathematics that have a direct bearing on ¾XLGPHFKDQLFV The monographs and collections of works published here may be written in a more expository style than is usual for research journals, with the intention of reaching a wide audience. Collections of review articles will also be sought from time to time.
Eduard Feireisl Antonín Novotný
Singular Limits in Thermodynamics of Viscous Fluids
Birkhäuser Basel · Boston · Berlin
Authors: (GXDUG)HLUHLVO 0DWKHPDWLFDO,QVWLWXWH$6&5 çLWQi 115 67 Praha 1 &]HFK5HSXEOLF HPDLOIHLUHLVO#PDWKFDVF]
$QWRQtQ1RYRWQä ,0$7+DQG'pSDUWHPHQW GH0DWKpPDWLTXHV 8QLYHUVLWpGX6XG7RXORQ9DU BP 20132 /D*DUGH )UDQFH e-mail: [email protected]
0DWKHPDWLFDO6XEMHFW&ODVVL½FDWLRQ441%&
/LEUDU\RI&RQJUHVV&RQWURO1XPEHU Bibliographic information published by Die Deutsche Bibliothek: 'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUD½H GHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQWKHLQWHUQHWDWKWWSGQEGGEGH!
,6%1%LUNKlXVHU9HUODJ%DVHO°%RVWRQ°%HUOLQ
This work is subject to copyright. All rights are reserved, whether the whole or part of the PDWHULDOLVFRQFHUQHGVSHFL½FDOO\WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRILOOXVWUDWLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFUR½OPVRULQRWKHUZD\VDQGVWRUDJH LQGDWDEDQNV)RUDQ\NLQGRIXVHSHUPLVVLRQRIWKHFRS\ULJKWRZQHUPXVWEHREWDLQHG
%LUNKlXVHU9HUODJ32%R[&+%DVHO6ZLW]HUODQG Part of Springer Science+Business Media 3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&) Printed in Germany ,6%1
H,6%1
ZZZELUNKDXVHUFK
Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xi
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xv
Notation, Definitions, and Function Spaces 0.1 0.2
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Differential operators . . . . . . . . . . . . . . . . . . . . . . . .
xvii xix
0.3
Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . .
xx
Data Loading...