Spatial models of an unconstrained rigid body

In this chapter the model of an unconstrained rigid body under spatial motion will be derived for three applications: Rigid body attached to the base by a translational spring-damper element. Spatial servo-pneumatic parallel robot. Model equations of a sp

  • PDF / 39,200,582 Bytes
  • 674 Pages / 439.37 x 666.142 pts Page_size
  • 108 Downloads / 207 Views

DOWNLOAD

REPORT


Springer-V erlag Berlin Heidelberg GmbH

ONLINE LIBRARY

http://www.springer.de/engine/

Hubert Hahn

Rigid Body Dynamics of Mechanisms 2

Applications

With 228 Figures

'Springer

Professor Dr. Hubert Hahn Universität Gh Kassel Regelungstechnik und Systemdynamik, FB Maschinenbau Mönchebergstraße 7 D-34109 Kassel Germany

e-mail: [email protected]

Cataloging-in-Publication Data applied for Bibliographieinformation published by Die Deutsche Bibliothek Die Deutsche Bibliotheklists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in theInternetat ..+f(p,v) + qc(p,v),

(2.3a)

jJ

(2.3b)

=:Cf with

g(p) = 0

(2.3c)

as the constraint position equation, which is written in an implicit form. Consider P;nct E ~np-nc as the vector ofthe minimal (independent) Cartesian coordinates of p with for planar mechanisms and for spatial mechanisms,

(2.4a)

and Pctep E ~nc as the vector of the dependent coordinates. Then V;nct can be written in the form

Pind

and

(2.4b) (2.4c)

Pind

= Prind · P

Pind

=

Vind

= Prvind ·V= Prind

Vind

= Prind

Pr ind

·

P

(2.4d) (2.4e)

·V

(2.4f)

·V

with the projection matrix p .

av m_d E ap. ___ ,_ ~ ap -

rmd . -

av

JH.np-nc,np

(2.4g)

or apind 1lßP1 Prind

=

(

.

, ... ,

.

8pinct

1IPnp

. .

' .' . apind np - nc I apl ' ... ' OPind np - nc I Pnp 0



0

) •

2.2 Model equations in symbolic DE form

13

Here Prvind has been chosen as Prind in (2.4e) and (2.4f). Then, the vectors of the dependent coordinates and velocities are P dep = ( Pctep

1l • • • l

(2.4h)

Pctep nc ) T E JR."c

Pdep

=

P

(2.4i)

Pctep

= Prdep · P

(2.4j)

vdep = vdep

P,-dep ·

(2.4k)

Prdep. V

= P,-ctep · v

(2.41)

with the projection matrix

P rdep .._- 8pdep -_ 8vdep 8p 8v

E

mnc,np

(2.4m)

_!!.3!._

= ( 8pind ) T

(2.4n)

__!!3!._

= (

m,.

Then

8p

=

__!!E_

=

pT d =

8pind

rm

8p

8vind

and =

pT rdep

8pdep

8v dep

8pctep ) 8p

T

(2.4o)

'

and the following relations hold: P

= 88p . Pind + __!!E_ . Pdep = 8 Pind

Pctep

pT

rmd

.

Pind

+ pTrdep . Pctep

(2.4p)

Vinct

:r + prdep. Vctep·

(2.4q)

and

8v

V=->)--. uvind

V;nd

+ 8v

->)--.

Vctep

:r

= prind.

uvdcp

The implicit constraint position equation (2.3c) will now be written in the explicit form (2.5a)

w Pind

w f--+

P

=

h(pinJ

with the nc components h; of h as the solutions Pctep j =Pi

= h;(p,nJ

(2.5b)

of the nc independent, consistent and smooth constraint position equations (2.3c). The time derivative of (2.5a) is jJ = hPind (p,nJ. Pind with hPind (p,nJ :=

8 ~;.inJ E md

]R_np,np-nc.

(2.5c)

2. Model equations in symbolic DAE and DE form

14

Due ta (2.4d), (2.3a), and (2.5a), Pind = Prind · P = Prind · T(p)

(2.5d)

·V

ar

Pind = Prind · T(h(pind))

(2.5e)

·V.

Introducing the relatian (2.5f) which defines the matrix T,nct(P,nJ, yields, tagether with (2.5e): Tind(Pind) · Vind =Prim!· T(h(p,"J)

·V

Assuming that T,nct(P,nd) is a regular matrix, this yields v,nd = T;;;;(P,nJ · Prind · T(h(p,"J) · v.

(2.5g)

Tagether with (2.4c), this yields thc rclat