Stability analysis of long hydrodynamic journal bearings based on the journal center trajectory

  • PDF / 2,293,272 Bytes
  • 8 Pages / 591.604 x 842 pts Page_size
  • 79 Downloads / 166 Views

DOWNLOAD

REPORT


ISSN 2223-7690 CN 10-1237/TH

SHORT COMMUNICATION

Stability analysis of long hydrodynamic journal bearings based on the journal center trajectory   Yu HUANG1, Haiyin CAO1, Zhuxin TIAN2,* 1

State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2

School of Mechanical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China

Received: 23 April 2020 / Revised: 13 July 2020 / Accepted: 21 August 2020

© The author(s) 2020. Abstract:  In  this  study,  we  observe  that  there  are  two  threshold  speeds  (stability  threshold  speed  and  second  threshold  speed) for  the  long journal  bearing,  which  is  different  for  the  short  bearing.  When  the  rotating  speed  is  below  the  stability  threshold  speed,  the  stability  boundary  nearly  coincides  with  the  clearance circle, and the journal center gradually returns to the equilibrium point after being released at  an  initial  point.  If  the  rotating  speed  is  between  the  stability  threshold  speed  and  the  second  threshold  speed,  after  being  released  at  an  initial  point,  the  journal  center  converges  to  a  contour  containing  the  equilibrium point. In this situation, for a higher rotating speed, the corresponding contour is also larger.  When  the  rotating  speed  exceeds  the  second  threshold  speed,  the  journal  gradually  moves  towards  the  bearing surface after being released at an initial point.    Keywords: long journal bearings; stability threshold speed; stability boundary; journal center trajectory     

1    Introduction  Hydrodynamic  bearings  are  widely  used  in high‐speed  rotating  machinery  and  equipment.  During  high‐speed  rotation,  the  oil  whirl  cannot  be  ignored,  which  restricts  the  rotating  speed  of  the  bearings.  Over  the  last  few  decades,  several  studies  have  been  conducted  to  discuss  the  nonlinear stability of oil film bearings considering  the oil whirl.    Hollis and Taylor [1] discussed the critical speed  stability  boundary  of  short  bearings  by  applying  Hopf  bifurcation  and  linear  stability  theory.  Khonsari  and  Chang  [2]  studied  the  stability  boundary  of  short  hydrodynamic  bearings  lubricated  with  Newtonian  fluids  applying  the  fourth  order  RungeKutta  method  and  the  RouthHurwitz stability criterion. Bouaziz et al. [3] 

discussed the dynamic performances of a misaligned  rotor  supported  by  hydrodynamic  bearings.  Jang  and Yoon [4] analyzed the stability of hydrodynamic  journal bearings with herringbone grooves. Smolík  et  al.  [5]  investigated  the  threshold  speed  and  threshold  curve  of  nonlinear  hydrodynamic  bearings by applying a short bearing approximation.  Kushare  and  Sharma  [6]  displayed  the  nonlinear  stability  of  hybrid  journal  bearings  with  valve  restrictors lubricated using non‐Newtonian fluids,  and  Li  et  al.  [7]  illustrated  the  nonli