Stability/nonstability properties of renormalized/entropy solutions for degenerate parabolic equations with $$L^{1}$$
- PDF / 995,910 Bytes
- 50 Pages / 439.37 x 666.142 pts Page_size
- 24 Downloads / 232 Views
Stability/nonstability properties of renormalized/entropy solutions for degenerate parabolic equations with L1 /measure data M. Abdellaoui1 Received: 7 April 2020 / Accepted: 23 May 2020 © Sociedad Española de Matemática Aplicada 2020
Abstract We study the possibility to give a formulation to the degenerate parabolic problems modeled by u t − div |∇u| p−2 ∇u)/(1 + |u|)θ ( p−1) = μ in (0, T ) × , 1 (Pb ) u(0, x) = u 0 (x) in , u(t, x) = 0 on (0, T ) × ∂, where θ > 0, u 0 ∈ L 1 () and μ is a general (nonnegative) Radon measure. We also investigate the strong stability of solutions for noncoercive absorption problems whose model u t − div |∇u| p−2 ∇u)/(1 + |u|)θ ( p−1) + |u|q−1 u = f in (0, T ) × , 2 (Pb ) u(0, x) = 0 in , u(t, x) = 0 on (0, T ) × ∂ where q > r ( p − 1)[1 + θ ( p − 1)]/(r − p) and f ∈ L 1loc (Q\K ) with K is a compact subset of Q of zero r -capacity (or, is a measure concentrated on a set of r -capacity zero). We prove the convergence of approximate solutions u n (related to a regular approximation μn of μ) towards a renormalized solutions u of (Pb1 ), and we extend the previous known-results on the nonstability of entropy solutions for problems (Pb2 ). Keywords Concentration phenomena · Generalized solutions · Degenerate parabolic equations · Approximate methods · Measures · Capacities Mathematics Subject Classification 35A01, 35D30, 35K65, 35A20, 28A12
B 1
M. Abdellaoui [email protected] LAMA, Department of Mathematics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, B.P. 1796, Atlas Fez, Morocco
123
M. Abdellaoui
Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . 2 Some basic facts on capacity and measures . . . . . . 2.1 Notations and definitions . . . . . . . . . . . . . 2.2 Capacity and measures . . . . . . . . . . . . . . 3 Assumptions and statement of the first stability result . 4 Proof of the stability result . . . . . . . . . . . . . . . 5 Strong stability result for parabolic problem (1.2) . . . 6 Main results and Proofs . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
1 Introduction In this paper we study the stability and non-stability results for degenerate parabolic problems in a domain Q = (0, T ) × ( is a bounded open subset of R N , N ≥ 2, and T > 0) with right-hand side in L 1loc (Q) (the space of locally integrable functions) or M(Q) (the space of, general, Radon measures with bounded total variation). Surprisingly, although (in general) the finite energy (weak) solu
Data Loading...