Statistical Physics and Computational Methods for Evolutionary Game Theory

This book presents an introduction to Evolutionary Game Theory (EGT) which is an emerging field in the area of complex systems attracting the attention of researchers from disparate scientific communities. EGT allows one to represent and study several com

  • PDF / 2,205,420 Bytes
  • 81 Pages / 439.43 x 666.14 pts Page_size
  • 19 Downloads / 169 Views

DOWNLOAD

REPORT


Marco Alberto Javarone

Statistical Physics and Computational Methods for Evolutionary Game Theory

SpringerBriefs in Complexity Editorial Board for Springer Complexity Henry D.I. Abarbanel, La Jolla, USA Dan Braha, Dartmouth, USA Péter Érdi, Kalamazoo, USA Karl J. Friston, London, UK Hermann Haken, Stuttgart, Germany Viktor Jirsa, Marseille, France Janusz Kacprzyk, Warsaw, Poland Kunihiko Kaneko, Tokyo, Japan Scott Kelso, Boca Raton, USA Markus Kirkilionis, Coventry, UK Jürgen Kurths, Potsdam, Germany Ronaldo Menezes, Florida, USA Andrzej Nowak, Warsaw, Poland Hassan Qudrat-Ullah, Toronto, Canada Peter Schuster, Vienna, Austria Frank Schweitzer, Zürich, Switzerland Didier Sornette, Zürich, Switzerland Stefan Thurner, Vienna, Austria

Springer Complexity Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems—cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamics of stock markets and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in social systems, to name just some of the popular applications. Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence. The three major book publication platforms of the Springer Complexity program are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which are concise and topical working reports, case-studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works.

More information about this series at http://www.springer.com/series/8907

Marco Alberto Javarone

Statistical Physics and Computational Methods for Evolutionary Game Theory

123

Marco Alberto Javarone School of Computer Science University of Hertfordshire Hatfield, UK

ISSN 2191-5326 ISSN 2191-5