Structural Characterization
The aim of this chapter is to convey the basic principles of X-ray and electron diffraction, as used in the structural characterization of semiconductor heterostructures. A number of key concepts associated with radiation–material and particle–material in
- PDF / 7,144,178 Bytes
- 29 Pages / 547.146 x 686 pts Page_size
- 24 Downloads / 190 Views
The aim of this chapter is to convey the basic principles of X-ray and electron diffraction, as used in the structural characterization of semiconductor heterostructures. A number of key concepts associated with radiation–material and particle–material interactions are introduced, with emphasis placed on the nature of the signal used for sample interrogation. Various modes of imaging and electron diffraction are then described, followed by a brief appraisal of the main techniques used to prepare electrontransparent membranes for TEM analysis. A number of case studies on electronic and photonic material systems are then presented in the context of a growth or device development program; these emphasize the need to use complementary techniques when characterizing a given heterostructure.
17.4
Optics, Imaging and Electron Diffraction ....................... 17.4.1 Electron Diffraction and Image Contrast Analysis ....... 17.4.2 Microdiffraction and Polarity ...... 17.4.3 Reflection High-Energy Electron Diffraction ................................
351 355 358 359
17.5
Characterizing Functional Activity ......... 362
17.6
Sample Preparation ............................. 362
17.7
Case Studies – Complementary Characterization of Electronic and Optoelectronic Materials ................ 17.7.1 Identifying Defect Sources Within Homoepitaxial GaN ......... 17.7.2 Cathodoluminescence/Correlated TEM Investigation of Epitaxial GaN ........................ 17.7.3 Scanning Transmission Electron Beam Induced Conductivity of Si/Si1−x Gex /Si(001) ..................
364 366
367
367
17.1
Radiation–Material Interactions ........... 344
17.2
Particle–Material Interactions............... 345
17.8
17.3
X-Ray Diffraction ................................. 348
References .................................................. 370
The functional properties of semiconductors emanate from their atomic structures; indeed, the interrelationship between materials processing, microstructure and functional properties lies at the heart of semiconductor science and technology. Therefore, if we are to elucidate how the functional properties of a semiconductor depend on the processing history (the growth or device fabrication procedures used), then we must study the development of the microstructure of the semiconductor by applying an appropriate combination of analytical techniques to the given bulk crystal, heterostructure or integrated device structure. The main aim of this chapter is to provide a general introduction to the techniques used to characterize the structures of semiconductors. Thus, we consider techniques such as X-ray diffraction (XRD) and electron diffraction, combined with diffraction contrast imaging, alongside related techniques used for chem-
ical microanalysis, since modern instruments such as analytical electron microscopes (AEMs) provide a variety of operational modes that allow both structure and chemistry to be investigated, in addition to functional activity. For example, chemical microanalyses of the fine-sca
Data Loading...