Surface Chemical Analysis

The physical bases of surface chemical analysis techniques are described in the context of semiconductor analysis. Particular emphasis is placed on the SIMS (secondary ion mass spectrometry) technique, as this is one of the more useful tools for routine s

  • PDF / 913,205 Bytes
  • 12 Pages / 547.146 x 686 pts Page_size
  • 117 Downloads / 189 Views

DOWNLOAD

REPORT


18. Surface Chemical Analysis

Surface Chem Surface chemical analysis is a term that is applied to a range of analytical techniques that are used to determine the elements and molecules present in the outer layers of solid samples. In most cases, these techniques can also be used to probe the depth distributions of species below the outermost surface. In 1992 the International Standards Organisation (ISO) established a technical committee on surface chemical analysis (ISO TC 201) to harmonize methods and procedures in surface chemical analysis. ISO TC 201 has a number of subcommittees that deal with different surface chemical analytical techniques and this chapter will discuss the applications of these different methods, defined by ISO TC 201, in the context of semiconductor analyses. In particular, this discussion is intended to deal with practical issues concerning the application of surface chemical analysis to routine measurement rather than to the frontiers of current research. Standards relating to surface chemical analysis developed by the ISO TC201 committee can be found on the ISO TC201 web site www.iso.org (under “standards development”). Traditional surface chemical analysis techniques include the electron spectroscopy-based methods Auger electron spectroscopy (AES or simply Auger) and X-ray photoelectron spectroscopy (XPS, once also known as ESCA – electron spectroscopy for chemical analysis), and the mass spectrometry method SIMS (secondary

18.1

Electron Spectroscopy .......................... 373 18.1.1 Auger Electron Spectroscopy ....... 373 18.1.2 X-Ray Photoelectron Spectroscopy (XPS) ..................... 375

18.2 Glow-Discharge Spectroscopies (GDOES and GDMS)................................ 376 18.3 Secondary Ion Mass Spectrometry (SIMS) 377 18.4 Conclusion .......................................... 384

ion mass spectrometry). The ISO TC 201 committee also has a subcommittee that deals with glow discharge spectroscopies. Whilst these latter methods have been used more for bulk analysis than surface analysis, the information they produce comes from the surface of the sample as that surface moves into the sample, and so they have been finding applications in depth profiling studies. One thing that is common to all of these surface chemical analysis techniques is that they are vacuumbased methods. In other words, the sample has to be loaded into a high or ultrahigh vacuum system for the analysis to be carried out. With the one exception of glow discharge optical emission spectroscopy (GDOES), where the analysis relies upon the detection of photons, all of the techniques also depend upon the detection of charged particles. This requirement for vacuum operation necessarily imposes limits on the types and sizes of samples that can be analyzed, although of course instruments capable of handling semiconductor wafers do exist. The quality of the vacuum environment around the sample can also affect the quality of the analysis, especially with regard to the detection of elements that exist in the atmosp