Surface Temperature Changes Projected by FGOALS Models under Low Warming Scenarios in CMIP5 and CMIP6

  • PDF / 3,804,332 Bytes
  • 18 Pages / 595.3 x 841.9 pts (A4) Page_size
  • 107 Downloads / 209 Views

DOWNLOAD

REPORT


  •  Original Paper •  

Surface Temperature Changes Projected by FGOALS Models under Low Warming Scenarios in CMIP5 and CMIP6 Shang-Min LONG*1,2, Kai-Ming HU3, Gen LI1,2, Gang HUANG3, and Xia QU3 1Key

Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing 210098, China 2College

3State

of Oceanography, Hohai University, Nanjing 210098, China

key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics and Center for

Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China (Received 2 June 2020; revised 30 July 2020; accepted 20 August 2020) ABSTRACT To meet the low warming targets proposed in the 2015 Paris Agreement, substantial reduction in carbon emissions is needed in the future. It is important to know how surface climates respond under low warming targets. The present study investigates the surface temperature changes under the low-forcing scenario of Representative Concentration Pathways (RCP2.6) and its updated version (Shared Socioeconomic Pathways, SSP1-2.6) by the Flexible Global Ocean– Atmosphere–Land System (FGOALS) models participating in phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). In both scenarios, radiative forcing (RF) first increases to a peak of 3 W m−2 around 2045 and then decreases to 2.6 W m−2 by 2100. Global mean surface air temperature rises in all FGOALS models when RF increases (RF increasing stage) and declines or holds nearly constant when RF decreases (RF decreasing stage). The surface temperature change is distinct in its sign and magnitude between the RF increasing and decreasing stages over the land, Arctic, North Atlantic subpolar region, and Southern Ocean. Besides, the regional surface temperature change pattern displays pronounced model-to-model spread during both the RF increasing and decreasing stages, mainly due to large intermodel differences in climatological surface temperature, ice-albedo feedback, natural variability, and Atlantic Meridional Overturning Circulation change. The pattern of tropical precipitation change is generally anchored by the spatial variations of relative surface temperature change (deviations from the tropical mean value) in the FGOALS models. Moreover, the projected changes in the updated FGOALS models are closer to the multi-model ensemble mean results than their predecessors, suggesting that there are noticeable improvements in the future projections of FGOALS models from CMIP5 to CMIP6. Key words: surface temperature, low warming targets, Arctic amplification, AMOC, Southern Ocean Citation: Long, S.-M., K.-M. Hu, G. Li, G. Huang, and X. Qu, 2021: Surface temperature changes projected by FGOALS models under low warming scenarios in CMIP5 and CMIP6. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0177-5. (in press) Article Highlights:

•  Changes in surface temperature projected by FGOALS models under low warming scenarios are more consistent with the multi-model