Synthesis of three-dimensional nickel ferrite nanospheres decorated activated graphite nanoplatelets for electrochemical

  • PDF / 891,040 Bytes
  • 8 Pages / 595.276 x 790.866 pts Page_size
  • 3 Downloads / 194 Views

DOWNLOAD

REPORT


ORIGINAL PAPER

Synthesis of three-dimensional nickel ferrite nanospheres decorated activated graphite nanoplatelets for electrochemical detection of vortioxetine with pharmacokinetic insights in human volunteers Mater H. Mahnashi 1 Received: 22 April 2020 / Accepted: 19 August 2020 # Springer-Verlag GmbH Austria, part of Springer Nature 2020

Abstract An innovative electrochemical nanoprobe was developed for determination of vortioxetine (VORT), a serotonergic antidepressant drug, for the first time. The fabrication of the nanoprobe is based on decoration of a glassy carbon electrode with threedimensional nickel ferrite nanospheres modified activated graphite nanoplatelets (3D NiFe2O4 NS/AGNP/GCE). The morphological characterization of the nanoprobe was carried out via scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDS), N2-adsorption-desorption isotherm, and powder X-ray spectroscopy (PXRD). In addition, the electrochemical behavior of the nanoprobe was described using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). A well-defined and irreversible peak at 0.82 V was seen at the surface of 3D NiFe2O4 NS/AGNP/GCE. The proposed nanoprobe exhibited outstanding electro-catalytic activity towards VORT oxidation. Under the optimized conditions, the anodic oxidation currents were linearly proportional to VORT concentration at the working range 1.8– 90 nM with a LOD of 0.55 nM. The nanoprobe was used to determine VORT in pharmaceutical tablets and human plasma samples. Satisfactory recoveries and RSD percentages were obtained in the range 103.8–107.7% (RSD% = 2.7–3.1%) and 101.4–105.3% (RSD % = 2.8–3.4%) for tablets and plasma samples, respectively. Moreover, the method was used to monitor VORT during a pharmacokinetic study in human volunteers with satisfactory results. The 3D NiFe2O4 NS/AGNP/GCE shows excellent sensitivity, reproducibility, and selectivity towards VORT detection. The proposed electrode could be utilized as simple, rapid, and inexpensive sensing tool for routine analysis and during pharmacokinetic/pharmacodynamic investigations. Keywords Vortioxetine . 3D NiFe2O4 nanospheres . Activated graphite nanosheets . Glassy carbon electrode . Pharmacokinetic study

Introduction Major depressive disorder (MDD) is related to deficiencies in cognitive functions and is a leading cause of disability, and is associated with remarkable impairment of life quality, decrease of productivity, and substantial economical lose [1–3]. Vortioxetine (VORT) is a new antidepressant drug that Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00604-020-04523-0) contains supplementary material, which is available to authorized users. * Mater H. Mahnashi [email protected] 1

Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia

has been approved