Temperature Dependence of Long-Term Alteration Rate for Aqueous Alteration of P0798 Simulated Waste Glass under Smectite
- PDF / 78,387 Bytes
- 8 Pages / 612 x 792 pts (letter) Page_size
- 117 Downloads / 176 Views
Temperature Dependence of Long-Term Alteration Rate for Aqueous Alteration of P0798 Simulated Waste Glass under Smectite Forming Conditions Y.Inagaki, T.Saruwatari, K.Idemitsu, T.Arima, A.Shinkai Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 812-8581, Japan H.Yoshikawa, M.Yui Waste Isolation Research Division, JNC, Ibaraki 319-1194, Japan ABSTRACT Several kinetic models have been proposed to evaluate the aqueous dissolution/ alteration rate of nuclear waste glass for long-term. However, reaction processes controlling the long-term rate are much more subjected to controversy. Temperature dependence of the long-term alteration rate is an essential issue to understand the rate controlling processes. In the present study, the static aqueous alteration tests were performed with a Japanese simulated waste glass P0798 as a function of temperature from 60°C to120°C, and the temperature dependence of the long-term alteration rate was evaluated to understand the rate controlling processes. The tests were performed in 0.001M NaOH solution to maintain a constant solution pH of around 10 during the test period and to provide smectite forming conditions where smectite forms as the major secondary phase without zeolite formation. From the test results on dissolution of boron, the alteration rate at each temperature was analyzed by use of a water-diffusion model. The water-diffusion model used is based on a simple assumption; the glass alteration is controlled by water diffusion with ion-exchange between water (hydronium ion: H3O+) and soluble elements (B, Na, Li, etc) at the glass surface layer with the apparent diffusion coefficient Di. A good agreement was observed between the model analysis and the test results, and the value of Di was evaluated to be 1.2 x 10-22 m2/s at 60°C to 1.8 x 10-21 m2/s at 120°C. The Arrhenius plot of Di showed a good linearity to give the activation energy of 49 kJ/mol, which value is close to that for the residual dissolution rate of French waste glass (53 kJ/mol) by Gin [1], and is very close to that for ion-exchange in sodium aluminosilicate glass (49 kJ/mol) by McGrail [2]. These results suggest that water diffusion with ion-exchange can be the dominant process controlling the alteration rate under smectite forming conditions. At elevated temperatures (100°C and 120°C), however, the model-predicted boron releases deviated from the experimental data at the later stage beyond 50-80 days, which suggests that the alteration layer developing at the glass surface may evolve to be protective against the water diffusion to depress the alteration rate as the alteration proceeds. INTRODUCTION A large number of studies on nuclear waste glass performance have been done, and several kinetic models have been proposed to evaluate the aqueous dissolution/alteration rate. The first-order dissolution rate law [3] is one of essential kinetic models for evaluation of the dissolution rate, however, its applicability to the long-term rate under the disposal condition has been
Data Loading...