Testing species hypotheses for Fridericia magna , an enchytraeid worm (Annelida: Clitellata) with great mitochondrial va

  • PDF / 4,476,526 Bytes
  • 12 Pages / 595.276 x 790.866 pts Page_size
  • 45 Downloads / 152 Views

DOWNLOAD

REPORT


(2020) 20:116

RESEARCH ARTICLE

Open Access

Testing species hypotheses for Fridericia magna, an enchytraeid worm (Annelida: Clitellata) with great mitochondrial variation Svante Martinsson* , Mårten Klinth

and Christer Erséus

Abstract Background: Deep mitochondrial divergences were observed in Scandinavian populations of the terrestrial to semi-aquatic annelid Fridericia magna (Clitellata: Enchytraeidae). This raised the need for testing whether the taxon is a single species or a complex of cryptic species. Results: A total of 62 specimens from 38 localities were included in the study, 44 of which were used for species delimitation. First, the 44 specimens were divided into clusters using ABGD (Automatic Barcode Gap Discovery) on two datasets, consisting of sequences of the mitochondrial markers COI and 16S. For each dataset, the worms were divided into six not completely congruent clusters. When they were combined, a maximum of seven clusters, or species hypotheses, were obtained, and the seven clusters were used as input in downstream analyses. We tested these hypotheses by constructing haplowebs for two nuclear markers, H3 and ITS, and in both haplowebs the specimens appeared as a single species. Multi-locus species delimitation analyses performed with the Bayesian BPP program also mainly supported a single species. Furthermore, no apparent morphological differences were found between the clusters. Two of the clusters were partially separated from each other and the other clusters, but not strongly enough to consider them as separate species. All 62 specimens were used to visualise the Scandinavian distribution, of the species, and to compare with published COI data from other Fridericia species. Conclusion: We show that the morphospecies Fridericia magna is a single species, harbouring several distinct mitochondrial clusters. There is partial genetic separation between some of them, which may be interpreted as incipient speciation. The study shows the importance of rigorous species delimitation using several independent markers when deep mitochondrial divergences might give the false impression of cryptic speciation. Keywords: BPP, DNA-barcoding, Enchytraeidae, Haplowebs, Multispecies coalescence, Species delimitation

Background Molecular studies of organismal DNA have proven many traditionally accepted species rank taxa to be complexes of morphologically similar, so called cryptic, species (see [1]). Examples are found in most animal groups e.g., [2], * Correspondence: [email protected] Systematics and Biodiversity, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden

including segmented worms (Annelida) e.g., [3–5]. Mitochondrial markers, in particular, sometimes reveal distinct clusters of individuals within a genetically diverse but morphologically coherent assemblage of specimens, but testing such clusters as species hypotheses (putative cryptic species) in a standardised manner is not trivial. Methodological advances in speci