The Art of Proof Basic Training for Deeper Mathematics

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previ

  • PDF / 2,593,165 Bytes
  • 185 Pages / 530.447 x 738.91 pts Page_size
  • 5 Downloads / 200 Views

DOWNLOAD

REPORT


The Art of Proof Basic Training for Deeper Mathematics

13

  Editorial Board  

  

  

  

 

Matthias Beck Department of Mathematics San Francisco State University San Francisco, CA 94132 USA [email protected]

Editorial Board S. Axler Mathematics Department San Francisco State University San Francisco, CA 94132 USA [email protected]

Ross Geoghegan Department of Mathematical Sciences Binghamton University State University of New York Binghamton, NY 13902 USA [email protected]

K.A. Ribet Mathematics Department University of California at Berkeley Berkeley, CA 94720-3840 USA [email protected]

 

          © Matthias Beck and Ross Geoghegan 2010                                                                                                                          

                             



        

                                                                                                                                  